【題目】完成下面的證明:

已知:如圖,點D,EF分別在線段AB,BC,AC上,連接DE、EF,DM平分∠ADEEF于點M,∠1+2=180°.

求證: B =BED

證明:∵∠1+2=180°(已知),

又∵∠1+BEM=180°( ),

∴∠2=BEM   ),

DM_______________________________________________).

∴∠ADM =B_________________________________________),

MDE =BED_______________________________________).

又∵DM平分∠ADE (已知),

∴∠ADM =MDE ( )

∴∠B =BED(等量代換).

【答案】見詳解

【解析】

根據平行線的判定與性質、同角或等角的補角相等求解可得.

證明:∵∠1+2=180°(已知),

又∵∠1+BEM=180°(平角定義),

∴∠2=BEM(同角的補角相等),

DMBC(同位角相等兩直線平行).

∴∠ADM=B(兩直線平行同位角相等),

MDE=BED(兩直線平行內錯角相等).

又∵DM平分∠ADE(已知),

∴∠ADM=MDE(角平分線定義).

∴∠B=BED(等量代換).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在學習了二次根式的相關運算后,我們發(fā)現(xiàn)一些含有根號的式子可以表示成另一個式子的平方,如:

3+22+2+1()2+2+1(+1)2;

5+22+2+3()2+2××+()2(+)2

(1)請仿照上面式子的變化過程,把下列各式化成另一個式子的平方的形式:

①4+2;②6+4

(2)a+4(m+n)2,且a,mn都是正整數(shù),試求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知∠AOB,OA=OB,點EOB邊上,四邊形AEBF是平行四邊形.

1)請你只用無刻度的直尺在圖中畫出∠AOB的平分線.(保留作圖痕跡,不要求寫作法)

2)如圖2,請再說出兩種畫角平分線的方法(要求畫出圖形,并說明你使用的工具和依據)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中,裝有三個分別標記為“1”、“2”、“3”的球,這三個球除了標記不同外,其余均相同.攪勻后,從中摸出一個球,記錄球上的標記后放回袋中并攪勻,再從中摸出一個球,再次記錄球上的標記.
(1)請列出上述實驗中所記錄球上標記的所有可能的結果;
(2)求兩次記錄球上標記均為“1”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學七班共有45人,該班計劃為每名學生購買一套學具,超市現(xiàn)有A、B兩種品牌學具可供選擇已知1A學具和1B學具的售價為45元;2A學具和5B學具的售價為150元.

、B兩種學具每套的售價分別是多少元?

現(xiàn)在商店規(guī)定,若一次性購買A型學具超過20套,則超出部分按原價的6折出售設購買A型學具a且不超過30套,購買A、B兩種型號的學具共花費w元.

請寫出wa的函數(shù)關系式;

請幫忙設計最省錢的購買方案,并求出所需費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交BD于點G,交AB于點F.

(1)判斷直線AC與⊙O的位置關系,并說明理由;
(2)當BD=6,AB=10時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下列推理過程

已知:∠C+CBD=180°,∠ABD=85°,∠2=60°,求∠A的度數(shù).

解:∵∠C+CBD=180°(已知)

DBCE

∴∠1 ( )

∵∠2=∠3

∴∠1=∠2=60° ( )

又∵ ABD=85°(已知)

∴∠A180°-ABD-1= (三角形三內角和為180°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=30°,OP平分AOB,PDOBD,PCOBOAC,若PC=6,則PD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市第一次用6000元購進甲、乙兩種商品,其中甲商品件數(shù)的2倍比乙商品件數(shù)的3倍多20件,甲、乙兩種商品的進價和售價如下表(利潤=售價﹣進價)

進價(/)

20

28

售價(/)

26

40

(1)該超市第一次購進甲、乙兩種商品的件數(shù)分別是多少?

(2)該超市將第一次購進的甲、乙兩種商品全部賣出后一共可獲得多少利潤?

(3)該超市第二次以同樣的進價又購進甲、乙兩種商品.其中甲商品件數(shù)是第一次的2倍,乙商品的件數(shù)不變.甲商品按原價銷售,乙商品打折銷售.第二次甲、乙兩種商品銷售完以后獲得的利潤比第一次獲得的利潤多560元,則第二次乙商品是按原價打幾折銷售的?

查看答案和解析>>

同步練習冊答案