【題目】計(jì)算題
(1)已知x= -1,求x2+3x-1的值;
(2)已知 ,求 值.

【答案】
(1)解:當(dāng)x= -1時(shí),x2+3x-1=( -1)2+3( -1)-1

=2-2 +1+3 -3-1= -1


(2)解:原式= +2ab+ +2 -ab- -3 =ab

當(dāng)a=-2- ,b= -2

∴原式=ab=(-2- )( -2)=4-3=1


【解析】(1)將x的值代入代數(shù)式進(jìn)行計(jì)算。
(2)首先將多項(xiàng)式進(jìn)行化簡(jiǎn)計(jì)算,然后將a、b的值代入化簡(jiǎn)后的式子進(jìn)行計(jì)算。
【考點(diǎn)精析】掌握代數(shù)式求值和多項(xiàng)式乘多項(xiàng)式是解答本題的根本,需要知道求代數(shù)式的值,一般是先將代數(shù)式化簡(jiǎn),然后再將字母的取值代入;求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體”代入;多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(3a22的正確結(jié)果是(
A.9a5
B.6a5
C.6a4
D.9a4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y= 與一次函數(shù)y=﹣x+7的圖象交于點(diǎn)A.

(1)求點(diǎn)A的坐標(biāo);
(2)在y軸上確定點(diǎn)M,使得△AOM是等腰三角形,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);
(3)如圖、設(shè)x軸上一點(diǎn)P(a,0),過點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交y= 和y=﹣x+7的圖象于點(diǎn)B、C,連接OC,若BC= OA,求△ABC的面積及點(diǎn)B、點(diǎn)C的坐標(biāo);
(4)在(3)的條件下,設(shè)直線y=﹣x+7交x軸于點(diǎn)D,在直線BC上確定點(diǎn)E,使得△ADE的周長(zhǎng)最小,請(qǐng)直接寫出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3xy22+(﹣4xy3)(﹣xy)=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)Px,y),我們把P’y﹣1,﹣x﹣1)叫做點(diǎn)P的友好點(diǎn),已知點(diǎn)A1的友好點(diǎn)為A2,點(diǎn)A2的友好點(diǎn)為A3,點(diǎn)A3的友好點(diǎn)為A4,,這樣依次得到點(diǎn).

1)當(dāng)點(diǎn)A1的坐標(biāo)為(2,1),則點(diǎn)A3的坐標(biāo)為   ,點(diǎn)A2016的坐標(biāo)為   

2)若A2016的坐標(biāo)為(﹣3,2),則設(shè)A1x,y),求x+y的值;

3)設(shè)點(diǎn)A1的坐標(biāo)為(a,b ),若A1,A2,A3,…An,點(diǎn)An均在y軸左側(cè),求ab的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9的平方根是( )

A. 3 B. 3 C. ±3 D. ±6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小紅兩人做游戲,小明對(duì)小紅說:你任意想一個(gè)數(shù),把這個(gè)數(shù)加上5,然后乘以2接著減去4,最后除以2,把得到的結(jié)果告訴我,我就知道你想的是什么數(shù)結(jié)果小紅把按規(guī)則計(jì)算出結(jié)果為20告訴了小明.如果你是小明,你應(yīng)該告訴小紅,她想的數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ABCD,ADDC,ABBC,AEBC.

(1)求證:ADAE;

(2)若AD=8,DC=4,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式中x的值:(1)x2+6=10 (2)2(x-1)3=16.

查看答案和解析>>

同步練習(xí)冊(cè)答案