【題目】我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式.例如圖可以得到.請解答下列問題:
(1)寫出圖中所表示的數(shù)學等式;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知,,求的值;
(3)小明同學打算用張邊長為的正方形,張邊長為的正方形,張相鄰兩邊長為分別為、的長方形紙片拼出了一個面積為 長方形,那么他總共需要多少張紙片?
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于、的二元一次方程組(為常數(shù)).
(1)求這個二元一次方程組的解(用含的代數(shù)式表示);
(2)若方程組的解、滿足,求的取值范圍;
(3)若,設(shè),且m為正整數(shù),求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是的函數(shù),自變量的取值范圍為,下表是與的幾組對應(yīng)值
0 | 1 | 2 | 3 | 3.5 | 4 | 4.5 | … | |
1 | 2 | 3 | 4 | 3 | 2 | 1 | … |
小明根據(jù)學習函數(shù)的經(jīng)驗,利用上述表格所反映出的與之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.下面是小明的探究過程,請補充完整:
(1)如圖,在平面直角坐標系中,指出了以上表中各對對應(yīng)值為坐標的點. 根據(jù)描出的點,畫出該函數(shù)的圖象.
(2)根據(jù)畫出的函數(shù)圖象填空.
①該函數(shù)圖象與軸的交點坐標為_____.
②直接寫出該函數(shù)的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,4),請解答下列問題:
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標.
(2)畫出△A1B1C1繞原點O旋轉(zhuǎn)180°后得到的△A2B2C2,并寫出點A2的坐標.
【答案】(1)作圖見解析;點A1的坐標(2,﹣4);(2)作圖見解析;點A2的坐標(﹣2,4).
【解析】
試題分析:(1)分別找出A、B、C三點關(guān)于x軸的對稱點,再順次連接,然后根據(jù)圖形寫出A點坐標;
(2)將△A1B1C1中的各點A1、B1、C1繞原點O旋轉(zhuǎn)180°后,得到相應(yīng)的對應(yīng)點A2、B2、C2,連接各對應(yīng)點即得△A2B2C2.
試題解析:(1)如圖所示:點A1的坐標(2,﹣4);
(2)如圖所示,點A2的坐標(﹣2,4).
考點:1.作圖-旋轉(zhuǎn)變換;2.作圖-軸對稱變換.
【題型】解答題
【結(jié)束】
18
【題目】觀察下面的點陣圖和相應(yīng)的等式,探究其中的規(guī)律:
(1)認真觀察,并在④后面的橫線上寫出相應(yīng)的等式.
①1=1 ②1+2==3 ③1+2+3==6 ④ …
(2)結(jié)合(1)觀察下列點陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.
1=12②1+3=22③3+6=32④6+10=42⑤ …
(3)通過猜想,寫出(2)中與第n個點陣相對應(yīng)的等式 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)為了促進生活垃圾的分類處理,將生活垃圾分為:可回垃圾、廚余垃圾、其他垃圾三類,分別記為A,B,C:并且設(shè)置了相應(yīng)的垃圾箱,依次記為a,b,c.
(1)若將三類垃圾隨機投入三個垃圾箱,請你用樹形圖的方法求垃圾投放正確的概率:
(2)為了調(diào)查小區(qū)垃圾分類投放情況,現(xiàn)隨機抽取了該小區(qū)三類垃圾箱中總重500kg生活垃圾,數(shù)據(jù)如下(單位:)
a | b | c | |
A | 40 | 15 | 10 |
B | 60 | 250 | 40 |
C | 15 | 15 | 55 |
試估計“廚余垃圾”投放正確的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ACE中,CA=CE,∠CAE=30°,⊙O經(jīng)過點C,且圓的直徑AB在線段AE上.
(1)試說明CE是⊙O的切線;
(2)若△ACE中AE邊上的高為h,試用含h的代數(shù)式表示⊙O的直徑AB;
(3)設(shè)點D是線段AC上任意一點(不含端點),連接OD,當CD+OD的最小值為6時,求⊙O的直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC、BD交于點O,已知O是AC的中點,AE=CF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)若OD=OC,則四邊形ABCD是什么特殊四邊形?請直接給出你的結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,點G在邊BC的延長線上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于點O.
(1)求證:OE=OF;
(2)若點O為CD的中點,求證:四邊形DECF是矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com