【題目】已知二次函數(shù) y=ax2+bx+c(a≠0)中,函數(shù) y 與自變量 x 的部分對應(yīng)值如下表:
(1)求二次函數(shù)的解析式;
(2)求該函數(shù)圖象與 x 軸的交點坐標(biāo);
(3)不等式 ax2+bx+c+3>0 的解集是 .
【答案】(1)y=x2+2x﹣3;(2)(﹣3,0),(1,0);(3)x<﹣2 或 x>0 .
【解析】
(1)由題意解出c的值,將點(2,5),(﹣1,﹣4)代入列出方程組,解出即可;
(2)當(dāng)y=0時,求出x值,即可得到該函數(shù)圖象與 x 軸的交點坐標(biāo);
(3)由表格和a=1>0、拋物線開口向上即可得出解集.
(1)由題意,得 c=﹣3.
將點(2,5),(﹣1,﹣4)代入,
,
∴二次函數(shù)的解析式為 y=x2+2x﹣3;
(2)當(dāng) y=0 時,x2+2x﹣3=0, 解得:x=﹣3 或 x=1,
∴該函數(shù)圖象與 x 軸的交點坐標(biāo)(﹣3,0),(1,0);
(3)由表格可知,ax2+bx+c=﹣3,即 ax2+bx+c+3=0 的解為 x=﹣2 或 0,
∵a=1>0,拋物線開口向上,
∴不等式 ax2+bx+c+3>0 的解集是 x<﹣2 或 x>0.
故答案為 x<﹣2 或 x>0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一組數(shù)據(jù),,,,的平均數(shù)是22,方差是13,那么另一組數(shù)據(jù),,,,的方差是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,圖2是兩張形狀、大小完全相同的6×6方格紙,方格紙中的每個小長方形的邊長為1,所求的圖形各頂點也在格點上.
(1)在圖1中畫一個以點,為頂點的菱形(不是正方形),并求菱形周長;
(2)在圖2中畫一個以點為所畫的平行四邊形對角線交點,且面積為6,求此平行四邊形周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線 y=x2+bx+c 與 y 軸交于點 C,與 x 軸交于點 A 和點B(其中點 A 在 y 軸左側(cè),點 B 在 y 軸右側(cè)),對稱軸直線 x=交 x 軸于點 H.
(1)若拋物線y=x2+bx+c經(jīng)過點(﹣4,6),求拋物線的解析式;
(2)如圖1,∠ACB=90°,點P是拋物線y=x2+bx+c上位于y軸右側(cè)的動點,且 S△ABP=S△ABC,求點 P 的坐標(biāo);
(3)如圖 2,過點A作AQ∥BC交拋物線于點Q,若點Q的縱坐標(biāo)為﹣c, 求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是△ABC的內(nèi)心,AE的延長線和△ABC的外接圓相交于點D.AD與BC相交于點F,連結(jié)BE,DC,已知EF=2,CD=5,則AD=______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD邊AB上一點(不與點A,B重合),連接PD并將線段PD繞點P順時針方向旋轉(zhuǎn)90°得到線段PE, PE交邊BC于點F.連接BE、DF.
(1)求證:∠ADP=∠EPB;
(2)求∠CBE的度數(shù);
(3)當(dāng)的值等于多少時.△PFD∽△BFP?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,.一只蟬從點沿方向以的速度爬行,一只螳螂為了捕捉這只蟬,由點沿方向以的速度爬行,一段時間后,它們分別到達(dá)了點,的位置.若此時的面積為,求它們爬行的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com