【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

【答案】(1)(m,2m﹣5);(2)SABC =﹣;(3)m的值為10+2

【解析】(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點式,此題得解;

(2)過點C作直線AB的垂線,交線段AB的延長線于點D,由ABx軸且AB=4,可得出點B的坐標(biāo)為(m+2,4a+2m5),設(shè)BD=t,則點C的坐標(biāo)為(m+2+t,4a+2m5t),利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出SABC的值;

(3)由(2)的結(jié)論結(jié)合SABC=2可求出a值,分三種情況考慮:①當(dāng)m>2m2,即m<2時,x=2m2y取最大值,利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當(dāng)2m5≤m≤2m2,即2≤m≤5時,x=my取最大值,利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值;③當(dāng)m<2m5,即m>5時,x=2m5y取最大值,利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值.綜上即可得出結(jié)論.

1)y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,

∴拋物線的頂點坐標(biāo)為(m,2m﹣5),

故答案為:(m,2m﹣5);

(2)過點C作直線AB的垂線,交線段AB的延長線于點D,如圖所示,

ABx軸,且AB=4,

∴點B的坐標(biāo)為(m+2,4a+2m﹣5),

∵∠ABC=135°,

∴設(shè)BD=t,則CD=t,

∴點C的坐標(biāo)為(m+2+t,4a+2m﹣5﹣t),

∵點C在拋物線y=a(x﹣m)2+2m﹣5上,

4a+2m﹣5﹣t=a(2+t)2+2m﹣5,

整理,得:at2+(4a+1)t=0,

解得:t1=0(舍去),t2=﹣,

SABC=ABCD=﹣

(3)∵△ABC的面積為2,

=2,

解得:a=﹣,

∴拋物線的解析式為y=﹣(x﹣m)2+2m﹣5.

分三種情況考慮:

①當(dāng)m>2m﹣2,即m<2時,有﹣(2m﹣2﹣m)2+2m﹣5=2,

整理,得:m2﹣14m+39=0,

解得:m1=7﹣(舍去),m2=7+(舍去);

②當(dāng)2m﹣5≤m≤2m﹣2,即2≤m≤5時,有2m﹣5=2,解得:m=;

③當(dāng)m<2m﹣5,即m>5時,有﹣(2m﹣5﹣m)2+2m﹣5=2,

整理,得:m2﹣20m+60=0,

解得:m3=10﹣2(舍去),m4=10+2

綜上所述:m的值為10+2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.

(1)判斷:一個內(nèi)角為120°的菱形  等距四邊形.(填不是”)

(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點,請在答題卷給出的兩個網(wǎng)格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的等距四邊形,畫出相應(yīng)的等距四邊形,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為   端點均為非等距點的對角線長為  

(3)如圖1,已知ABECDE都是等腰直角三角形,∠AEB=DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,

1)觀察規(guī)形圖,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;

2)請你直接利用以上結(jié)論,解決以下三個問題:

①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XYXZ恰好經(jīng)過點B、C,∠A=40°,則∠ABX+ACX等于多少度;

②如圖3DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);

③如圖4,∠ABD,∠ACD10等分線相交于點G1、G2、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE已知BAC=30°,EFAB,垂足為F,連接DF

(1)試說明AC=EF;

(2)求證:四邊形ADFE是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ORt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l⊙O的切線,點D是直線l上一點,過點DDE⊥CBCB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.

(1)求證:△ACB∽△BED;

(2)當(dāng)AD⊥AC時,求 的值;

(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個反比例函數(shù)在第一象限內(nèi)的圖象如圖所示,點P的圖象上,PC軸于點C,交的圖象于點A,PC軸于點D,交的圖象于點B. 當(dāng)點P的圖象上運(yùn)動時,以下結(jié)論:

的值不會發(fā)生變化

PAPB始終相等

④當(dāng)點APC的中點時,點B一定是PD的中點.

其中一定不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的面積為12,的垂直平分線分別交,邊于點,,若點邊的中點,點為線段上一動點,則周長的最小值為( )

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一等邊三角形的三條邊各8等分,按順時針方向(圖中箭頭方向)標(biāo)注各等分點的序號01、2、3、45、67、8,將不同邊上的序號和為8的兩點依次連接起來,這樣就建立了三角形坐標(biāo)系.在建立的三角形坐標(biāo)系內(nèi),每一點的坐標(biāo)用過這一點且平行(或重合)于原三角形三條邊的直線與三邊交點的序號來表示(水平方向開始,按順時針方向),如點的坐標(biāo)可表示為(1,2,5),點的坐標(biāo)可表示為(4,13),按此方法,則點的坐標(biāo)可表示為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點DDEABAB的延長線于點E,DFAC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案