【題目】已知:如圖,直線與軸負半軸交于點,與軸正半軸交于點,線段的長是方程的一個根,請解答下列問題:
(1)求點的坐標;
(2)雙曲線與直線交于點,且,求的值;
(3)在(2)的條件下,點在線段上,,直線軸,垂足為,點在直線上,在直線上的坐標平面內(nèi)是否存在點,使以點、、、為頂點的四邊形是矩形?若存在,請求出點的坐標;若不存在,請說明理由。
【答案】(1);(2)10;(3)或
【解析】
(1)解方程x2-7x-8=0得:x=8,或x=-1,得出OA=8,A(-8,0),代入y=x+b求出b=4,即可得出B(0,4);
(2)在Rt△AOB中,由勾股定理求出AB= ,過點C作CH⊥x軸于H,則CH∥OB,由平行線得出△AOB∽△AHC,得出,求出CH=5,AH=10,得出OH=2,C(2,5),代入雙曲線得出k=10即可;
(3)先求出點E的坐標,再分三種情況討論計算即可得出結(jié)論.
解:(1)解方程得或.
∵線段的長是方程的一個根,
∵的長是正數(shù)
∴,
∴.
將代入,得,
∴,
∴.·
(2)在中,,
∴.
如圖,過點作軸于點,則,
∴
∴ 即
解得,
∴,
∴.
∵雙曲線()經(jīng)過點,
∴·
(3)存在
①當為以點為頂點的矩形的一邊時,過點作軸于點,作交直線于點,如圖所示,
∴,
∴
∴
∴,
∴,
∴.
∵,
∴設直線的函數(shù)表達式為,
把代入,得,
解得,
∴直線的函數(shù)表達式為
當時,,
∴,
∴.(注:也可以用三角形相似求解 ∴如圖3
圖3
∵
∴點的坐標為;(點的平移)
當為以點為頂點的矩形的一邊時,同理得出滿足條件的另一點的坐標為;
②當為以點為頂點的矩形的對角線時,點在直線的下方,不符合題意。
∴滿足條件的的坐標為或;
科目:初中數(shù)學 來源: 題型:
【題目】(題文)如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過點F作GF⊥AF交AD于點G,設 =n.
(1)求證:AE=GE;
(2)當點F落在AC上時,用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點F,C,G為頂點的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.
()請直接寫出袋子中白球的個數(shù).
()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子AC斜靠在右墻,測得梯子頂端距離地面AB=2米,梯子與地面夾角α的正弦值sinα=0.8.梯子底端位置不動,將梯子斜靠在左墻時,頂端距離地面2.4米,則小巷的寬度為( )
A. 0.7米B. 1.5米
C. 2.2米D. 2.4米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(h為常數(shù)),在自變量的值滿足的情況下,與其對應的函數(shù)值的最大值為0,則的值為( )
A. 和B. 和C. 和D. 和
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A1,A2,A3,… 和B1,B2,B3,… 分別在直線和x軸上.△OA1 B1,△B1 A2 B2,△B2 A3 B3,…都是等腰直角三角形.如果點A1(1,1),那么點A2019的縱坐標是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的外接圓,為直徑,的平分線交于點,過點作的平行線分別交,的延長線于點,.
(1)求證:是的切線;
(2)設,,試用含,的代數(shù)式表示線段的長;
(3)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)營一種文化衫,已知成批購進時的單價是20元.調(diào)查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每件文化衫售價不能高于40元.設每件文化衫的銷售單價上漲了元時(為正整數(shù)),月銷售利潤為元.
(1)求與的函數(shù)關系式并直接寫出自變量的取值范圍.
(2)每件文化衫的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于O,BD=2AD,E、F、G分別是OC、OD、AB的中點,下列結(jié)論:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四邊形BEFG是菱形.其中正確的是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com