如圖,已知AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點,弦PQ交CD于E,則PE•EQ的值是( )

A.24
B.9
C.6
D.27
【答案】分析:延長DC交⊙C于M,延長CD交⊙O于N.在⊙O中,由射影定理得CD=6.在⊙O、⊙C中,由相交弦定理可知PE•EQ=DE•EM=CE•EN,設(shè)CE=x,列方程求解得CE=3.所以DE=6-3=3,EM=6+3=9,即可求得PE•EQ.
解答:解:延長DC交⊙C于M,延長CD交⊙O于N.
∵CD2=AD•DB,AD=9,BD=4,
∴CD=6.
在⊙O、⊙C中,由相交弦定理可知,PE•EQ=DE•EM=CE•EN,
設(shè)CE=x,則DE=6-x,
則(6-x)(x+6)=x(6-x+6),
解得x=3.
所以,CE=3,DE=6-3=3,EM=6+3=9.
所以PE•EQ=3×9=27.
故選D.
點評:此題綜合運(yùn)用了相交弦定理、垂徑定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點,弦PQ交CD于E,則PE•EQ的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB為半⊙O的直徑,直線MN與⊙O相切于C點,AE⊥MN于E,BF⊥MN于F.
求證:(1)AE+BF=AB;(2)EF2=4AE•BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB為⊙O的直徑,直線l與⊙O相切于點D,AC⊥l于C,AC交⊙O于點E,DF⊥AB于F.
(1)圖中哪條線段與BF相等?試證明你的結(jié)論;
(2)若AE=3,CD=2,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•包頭)如圖,已知AB為⊙O的直徑,過⊙O上的點C的切線交AB的延長線于點E,AD⊥EC于點D且交⊙O于點F,連接BC,CF,AC.
(1)求證:BC=CF;
(2)若AD=6,DE=8,求BE的長;
(3)求證:AF+2DF=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•呼和浩特)如圖,已知AB為⊙O的直徑,PA與⊙O相切于點A,線段OP與弦AC垂直并相交于點D,OP與弧AC相交于點E,連接BC.
(1)求證:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
35
,求PE的長.

查看答案和解析>>

同步練習(xí)冊答案