【題目】ABC和ADE中,AB=AC,∠BAC=120°,∠ADE=90°,∠DAE=60°,F(xiàn)為BC中點,連接BE、DF,G、H分別為BE,DF的中點,連接GH.

(1)如圖1,若D在ABC的邊AB上時,請直接寫出線段GH與HF的位置關(guān)系   ,=   

(2)如圖2,將圖1中的ADE繞A點逆時針旋轉(zhuǎn)至圖2所示位置,其它條件不變,(1)中結(jié)論是否改變?請說明理由;

(3)如圖3,將圖1中的ADE繞A點順時針旋轉(zhuǎn)至圖3所示位置,若C、D、E三點共線,且AE=2,AC=,請直接寫出線段BE的長   

【答案】(1)GH⊥HF,(2)結(jié)論不變;(3).

【解析】

(1)如圖1中,連接DG,F(xiàn)G.根據(jù)直角三角形斜邊中線的性質(zhì),可得GD=GF,再證明△DGF是等邊三角形即可解決問題;
(2)結(jié)論不變.如圖2中,延長EDS,使DS=DE,連接AS,BS,CE,F(xiàn)G,DG.理由三角形的中位線定理,證明GD=GF,△GDF是等邊三角形即可解決問題;
(3)如圖3中,延長EDH,使得DH=DE,連接AH,BH,作BM⊥ECM,設BCAH于點O.想辦法證明∠BHE=60°,解直角三角形求出BM,ME即可解決問題;

解:(1)如圖1中,連接DG,F(xiàn)G.

∵AB=AC,BF=CF,

∴AF⊥ BC,∴ ∠ BAF= ∠ CAF=60°,

∵ ED⊥ AB,

∴ ∠ BFE=∠ BDE=90°,

∵BG=GE,

∴DG=BE,GF=BE,

∴DG=FG,∵DH=HF,

∴GH⊥ DF,

∵ ∠ BAE=60°,

∴ ∠ ABE+∠ AEB=120°,

∵ DG=BG=GF=GE,

∴ ∠ GBD=∠ GDB,∠ GEF=∠GFE,

∴ ∠ BGD+∠ EGF=120°,

∴ ∠ DGF=60°,

∴ △ DGF是等邊三角形,

=tan60°=

故答案為GH⊥ HF, =

(2)結(jié)論不變.

理由:如圖2中,延長ED至S,使DS=DE,連接AS,BS,CE,F(xiàn)G,DG.

∵ ∠ ADE=90°

∴ AS=AE,∠DAE=∠DAS=60°

∴ ∠ BAC=∠SAE=120°

∴ ∠ SAB= ∠ EAC

∵AB=AC

∴ △ ABS ≌ △ ACE

∴ BS=CE,∠ ABS=∠ACE

F,G分別為BC,BE中點

∴FG∥CE,F(xiàn)G=CE,

同理:DG∥BS,DG=BS,

∴DG=FG,

H為DF中點,

∴ GH⊥ HF,

延長SB交CE延長線于T,

∵ ∠ ABS+∠ABT=∠ ACE+∠ ABT=180°,

∴ ∠ BAC+∠ T=120°,

∴ ∠ T=60°,

延長FG交BT于P,

∴ ∠ T=∠ BPF=∠ DGF=60°,

∴ ∠HGF=30°,

=

(3)如圖3中,延長ED到H,使得DH=DE,連接AH,BH,作BMEC于M,設BC交AH于點O.

∵AD⊥EH,ED=DH,

∴AE=AH,

∴∠AEH=∠AHE=30°,

∴∠EAH=∠BAC=120°,

∴∠BAH=∠CAE,

∵AB=AC,AH=AE,

∴△BAH ≌ △ CAE(SAS),

∠ BHA=∠ AEC=30°,BH=CE,

∴∠ OBA=∠OHC=30°,

∵∠AOB=∠COH,

∴△AOB ∽ △COH,

= ,

=,∵∠ AOC=∠ BOH,

∴ △ AOC∽ △ BOH,

∴∠BHO=∠AOC=30°,

∴∠BHE=30°+30°=60°,

在RtADE中,∵AE=2,∠ AED=30°,

∴AD=1,ED=DH=,

在RtADC中,CD== ,

∴BH=EC=2

在RtBMH中,HM=(2+),BM=HM=(2+3),

∴EM=EH﹣HM=2(2+ )= ﹣1,

在RtEBM中,BE= = =

故答案為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC平分∠DABCEABE,AB=AD+2BE,則下列結(jié)論:①AB+AD=2AE;②∠DAB+DCB=180°;③CD=CB;④SACE2SBCE=SADC;其中正確結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得AC之間的距離為6cm,點BD之間的距離為8cm,則線段AB的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解不等式,并指出該不等式的非負整數(shù)解.

2)解不等式組:,并將解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩塊全等的含30°角的三角尺按如圖1所示的方式擺放在一起,它們較短的直角邊BCEC3

1)將ECD沿直線l向左平移到圖2的位置,使點E′落在AB上,則CC′   ;

2)將ECD繞點C逆時針旋轉(zhuǎn)到圖3的位置,使點E′落在AB上,則ECD繞點C旋轉(zhuǎn)的度數(shù)為   

3)將ECD沿直線AC翻折到圖4的位置,ED′AB相交于點F,求證:AFFD′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F分別是邊ABCD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2BAC,FC=2,則AB的長為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分學生成績(得分數(shù)取正整數(shù),滿分為100)進行統(tǒng)計,繪制統(tǒng)計圖如下(未完成),解答下列問題:(1)A組的頻數(shù)比B組小24,求頻數(shù)分布直方圖中a ,b (2)扇形統(tǒng)計圖中n ,并補全頻數(shù)分布直方圖;

(3)若成績在80分以上優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店準備購進一批電冰箱和空調(diào),每臺電冰箱的進價比每臺空調(diào)的進價多400元,商店用8000元購進電冰箱的數(shù)量與用6400元購進空調(diào)的數(shù)量相等.

(1)求每臺電冰箱與空調(diào)的進價分別是多少?

(2)已知電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元.若商店準備購進這兩種家電共100臺,其中購進電冰箱x臺(33x40),那么該商店要獲得最大利潤應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(7分)某蔬菜基地種植西紅柿,由歷年市場行情得知,從2月1日起的300天內(nèi),西紅柿市場售價與上市時間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖(2)的拋物線段Q=(t﹣150)2+100 (0≤t≤300)表示,(注:市場售價和種植成本的單位:元/100kg,時間單位:天)

(1)寫出圖(1)表示的市場售價P與時間t的函數(shù)關(guān)系式;

(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?

查看答案和解析>>

同步練習冊答案