探究題:
數(shù)學(xué)問題:各邊長都是整數(shù),最大邊長為21的三角形有多少個(gè)?
為解決上面的數(shù)學(xué)問題,我們先研究下面的數(shù)學(xué)模型:
數(shù)學(xué)模型:在1~21這21個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù),使得所取的兩個(gè)數(shù)之和大于21,有多少種不同取法?
為找到解決問題的方法,我們把上面數(shù)學(xué)模型簡(jiǎn)單化.
(1)在1~4這4個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù),使得所取的兩個(gè)數(shù)之和大于4,有多少種取法?
根據(jù)題意,有下列取法:1+4,2+3,2+4,3+2,3+4,4+1,4+2,4+3,而1+4與4+1,2+3與3+2,…是同一種取法,所以上述每一種取法都重復(fù)過一次,因此共有
=4=種不同的取法.
(2)在1~5這5個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù),使得所取的兩個(gè)數(shù)之和大于5,有多少種取法?
根據(jù)題意,有下列取法:1+5,2+4,2+5,3+4,3+5,4+2,4+3,4+5,5+1,5+2,5+3,5+4,而1+5與5+1,2+4與4+2,…是同一種取法,所以上述每一種取法都重復(fù)過一次,因此共有
=6=種不同的取法.
(3)在1~6這6個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù),使得所取的兩個(gè)數(shù)之和大于6,有多少種不同的取法?
根據(jù)題意,有下列取法:1+6,2+5,2+6,3+4,3+5,3+6,4+3,4+5,4+6,5+2,5+3,5+4,5+6,6+1,6+2,6+3,6+4,6+5,而1+6與6+1,2+5與5+2,…是同一種取法,所以上述每一種取法都重復(fù)過一次,因此共有
=9=種不同的取法.
(4)在1~7這7個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù),使得所取的兩個(gè)數(shù)之和大于7,有多少種取法?
根據(jù)題意,有下列取法:1+7,2+6,2+7,3+5,3+6,3+7,4+5,4+6,4+7,5+3,5+4,5+6,5+7,6+2,6+3,6+4,6+5,6+7,7+1,7+2,7+3,7+4,7+5,7+6,而1+7與7+1,2+6與6+2,…是同一種取法,所以上述每一種取法都重復(fù)過一次,因此共有
=12=種不同的取法…
問題解決
仿照上述研究問題的方法,解決上述數(shù)學(xué)模型和提出的問題
(1)在1~21這21個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù),使得所取的兩個(gè)數(shù)之和大于21,共有
種不同取法;(只填結(jié)果)
(2)在1~n(n為偶數(shù))這n個(gè)自然數(shù)中,每次取兩個(gè)數(shù),使得所取的兩個(gè)數(shù)字之和大于n,共有
種不同取法;(只填最簡(jiǎn)算式)
(3)在1~n(n為奇數(shù))這n個(gè)自然數(shù)中,每次取兩個(gè)數(shù),使得所取的兩個(gè)數(shù)之和大于n,共有
種不同取法;(只填最簡(jiǎn)算式)
(4)各邊長都是整數(shù)且不相等,最大邊長為21的三角形有多少個(gè)?(寫出最簡(jiǎn)算式和結(jié)果,不寫分析過程)