【題目】已知坐標平面內(nèi)的三個點、、.

(1)比較點到軸的距離與點到軸距離的大小;

(2)平移,當點和點重合時,求點的坐標;

(3)平移,需要至少向下平移超過 單位,并且至少向左平移 個單位,才能使位于第三象限.

【答案】(1)點到軸的距離等于點到軸距離; 2;33 3

【解析】

1)根據(jù)橫坐標為點到y軸的距離;縱坐標為點到x軸的距離即可比較大小;

2)由點A1和點B重合時,需將△ABC向右移2個單位,向下移2個單位,據(jù)此求解可得;

3)根據(jù)點A的縱坐標得出向下平移的距離,由點B的橫坐標得出向左平移的距離.

解:(1)∵

點到軸的距離為3

,點到軸距離為3

點到軸的距離等于點到軸距離

2)點和點重合時,需將向右移2個單位,向下移2個單位,

∴點的對應(yīng)點的坐標是

3)平移△ABO至△A2B2O2,需要至少向下平移超過3單位,并且至少向左平移3個單位,才能△A2B2O2使位于第三象限.

故答案為:33

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應(yīng)用題:某列車平均提速80km/h,用相同的時間,該列車提速前行駛300km,提速后比提速前多行駛200km,求該列車提速前的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一艘輪船在相距90千米的甲、乙兩地之間勻速航行,從甲地到乙地順流航行用6小時,逆流航行比順流航行多用4小時.

1)求該輪船在靜水中的速度和水流速度;

2)若在甲、乙兩地之間建立丙碼頭,使該輪船從甲地到丙地和從乙地到丙地所用的航行時間相同,問甲、丙兩地相距多少干米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】、圖、圖均是6×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點,小正方形的邊長為1,點均在格點上.在圖、圖、圖中,只用無刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫出畫法.

1)在圖中以線段為邊畫一個,使其面積為6

2)在圖中以線段為邊畫一個,使其面積為6

3)在圖中以線段為邊畫一個四邊形,使其面積為9,且

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊需完成A、B兩個工地的工程.若甲、乙兩個工程隊分別可提供40個和50個標準工作量,完成A、B兩個工地的工程分別需要70個和20個標準工作量,且兩個工程隊在A、B兩個工地的1個標準工作量的成本如下表所示:

A工地

B工地

甲工程隊

800

750

乙工程隊

600

570

設(shè)甲工程隊在A工地投入x20≤x≤40)個標準工作量,完成這兩個工程共需成本y元.

1)求yx之間的函數(shù)關(guān)系式;

2)請判斷y是否能等于62000,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.

(1)按約定,某顧客在該天早餐得到兩個雞蛋   事件(填隨機”、“必然不可能”);

(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠ACB=90°,∠CAB=a,且sina=,I為內(nèi)心,則ABC的內(nèi)切圓半徑rBIC的外接圓半徑R之比為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是圓的直徑,是弦,四邊形是平行四邊形,相交于點,下列結(jié)論錯誤的是(  )

A. B. C. D. 平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了進一步豐富校園活動,學校準備購買一批足球和籃球,已知購買7個足球和5個籃球的費用相同;購買40個足球和20個籃球共需3400元.

1)求每個足球和籃球各多少元?

2)如果學校計劃購買足球和籃球共80個,總費用不超過4800元,那么最多能買多少個籃球?

查看答案和解析>>

同步練習冊答案