【題目】在高處讓一物體由靜止開始落下,它下落的路程s與時(shí)間t之間的關(guān)系如下表:
時(shí)間t(秒) | 1 | 2 | 3 | 4 | 5 |
落下路程s(米) | 4.9×1 | 4.9×4 | 4.9×9 | 4.9×16 | 4.9×25 |
(1)請根據(jù)表格中的數(shù)據(jù)寫出時(shí)間t與物體落下的路程s之間的關(guān)系;
(2)算出當(dāng)t=4.5秒時(shí),物體落下的路程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對應(yīng)值:
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過程,請補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表格中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應(yīng)的函數(shù)值y約為_____________;
②該函數(shù)的一條性質(zhì):_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,各情況分別可以和哪幅畫來近似刻畫?
(1)一個(gè)球被向上拋起,直到落到地面的過程(球的高度與時(shí)間的關(guān)系) ;
(2)常溫下,往一杯涼水中倒開水(水溫與時(shí)間的關(guān)系) ;
(3)將澡盆中的水放掉(水的高度與時(shí)間的關(guān)系)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】垃圾對環(huán)境的影響日益嚴(yán)重,垃圾危機(jī)的警鐘被再次拉響.我市某中學(xué)積極響應(yīng)國家號召,落實(shí)垃圾“分類回收,科學(xué)處理”的政策,準(zhǔn)備購買、兩種型號的垃圾分類回收箱共20只,放在校園各個(gè)合適位置,以方便師生進(jìn)行垃圾分類投放.若購買型14只、型6只,共需4240元;若購買型8只、型12只,共需4480元.求型、型垃圾分類回收箱的單價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:(p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的完美分解.并規(guī)定:.
例如18可以分解成1×18,2×9或3×6,因?yàn)?/span>18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.
(1)F(13)= ,F(24)= ;
(2)如果一個(gè)兩位正整數(shù)t,其個(gè)位數(shù)字是a,十位數(shù)字為,交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個(gè)數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;
(3)在(2)所得“和諧數(shù)”中,求F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一漁船自西向東追趕魚群,在A處測得某無名小島C在北偏東60°方向上,前進(jìn)2nmile到達(dá)點(diǎn)B處,此時(shí)測得無名小島C在東北方向上.已知無名小島周圍2.5nmile內(nèi)有暗礁.問:漁船繼續(xù)追趕魚群有無觸礁危險(xiǎn)?
(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com