【題目】如圖,經(jīng)過點(diǎn)B(﹣2,0)的直線y=kx+b與直線y=4x+2相交于點(diǎn)A(﹣1,﹣2),則不等式4x+2<kx+b<0的解集為

【答案】﹣2<x<﹣1
【解析】解:∵經(jīng)過點(diǎn)B(﹣2,0)的直線y=kx+b與直線y=4x+2相交于點(diǎn)A(﹣1,﹣2), ∴直線y=kx+b與直線y=4x+2的交點(diǎn)A的坐標(biāo)為(﹣1,﹣2),直線y=kx+b與x軸的交點(diǎn)坐標(biāo)為B(﹣2,0),
又∵當(dāng)x<﹣1時(shí),4x+2<kx+b,
當(dāng)x>﹣2時(shí),kx+b<0,
∴不等式4x+2<kx+b<0的解集為﹣2<x<﹣1.
故答案為:﹣2<x<﹣1.
由圖象得到直線y=kx+b與直線y=4x+2的交點(diǎn)A的坐標(biāo)(﹣1,﹣2)及直線y=kx+b與x軸的交點(diǎn)坐標(biāo),觀察直線y=4x+2落在直線y=kx+b的下方且直線y=kx+b落在x軸下方的部分對應(yīng)的x的取值即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為促進(jìn)我市經(jīng)濟(jì)的快速發(fā)展,加快道路建設(shè),某高速公路建設(shè)工程中需修隧道AB,如圖,在山外一點(diǎn)C測得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長.(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求證:AE=DF;
(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB切⊙O于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧長為 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是AB邊上一點(diǎn),以BD為直徑的⊙O與邊AC相切于點(diǎn)E,連接DE并延長DE交BC的延長線于點(diǎn)F.
(1)求證:BD=BF;
(2)若CF=1,cosB= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)市場將一批蘋果分為A,B,C,D四個(gè)等級,統(tǒng)計(jì)后將結(jié)果制成條形圖,已知A等級蘋果的重量占這批蘋果總重量的30%. 回答下列問題:

(1)這批蘋果總重量為kg;
(2)請將條形圖補(bǔ)充完整;
(3)若用扇形圖表示統(tǒng)計(jì)結(jié)果,則C等級蘋果所對應(yīng)扇形的圓心角為度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)邊長為3的正方形的對角線長為a.下列關(guān)于a的四種說法: ①a是無理數(shù);
②a可以用數(shù)軸上的一個(gè)點(diǎn)來表示;
③3<a<4;
④a是18的算術(shù)平方根.
其中,所有正確說法的序號是(
A.①④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=2x+2的圖象與y軸交于點(diǎn)B,與反比例函數(shù)y= 的圖象的一個(gè)交點(diǎn)為A(1,m).過點(diǎn)B作AB的垂線BD,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)D(n,﹣2).

(1)求k1和k2的值;
(2)若直線AB、BD分別交x軸于點(diǎn)C、E,試問在y軸上是否存在一個(gè)點(diǎn)F,使得△BDF∽△ACE?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB、AC分別交于點(diǎn)D,E,DF⊥AC于點(diǎn)F.

(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為20,cosB= ,求陰影部分面積.

查看答案和解析>>

同步練習(xí)冊答案