已知:如圖△ABC的三邊長(zhǎng)分別為a、b、c,它的三條中位線組成一個(gè)新的三角形,這個(gè)新三角形精英家教網(wǎng)的三條中位線又組成了一個(gè)小三角形.
(1)求這個(gè)小三角形的周長(zhǎng).
(2)照上述方法繼續(xù)做下去,到第n次時(shí),這個(gè)小三角形的周長(zhǎng)是多少?
分析:(1)根據(jù)中位線的性質(zhì)可以得到這個(gè)小三角形與原來(lái)的三角形相似,且相似比為
1
2
,根據(jù)相似三角形周長(zhǎng)的比等于相似比能求出這個(gè)小三角形的周長(zhǎng).(2)按照這種方法作出的三角形與原來(lái)的三角形相似,相似比為
1
2
,所以第n個(gè)小三角形的周長(zhǎng)是第一個(gè)三角形周長(zhǎng)的
1
2n
解答:解:(1)因?yàn)檫@個(gè)新三角形的三邊分別與原三角形的三邊平行,所以新三角形與原三角形相似,根據(jù)中位線的性質(zhì)可知,兩三角形的相似比是
1
2
,因此,這個(gè)小三角形的周長(zhǎng)為
1
4
(a+b+c);

(2)由于第一個(gè)三角形的周長(zhǎng)為
1
2
(a+b+c),第二個(gè)小三角形的周長(zhǎng)為
1
4
(a+b+c)=
1
22
(a+b+c).
依此類推可得第n個(gè)小三角形的周長(zhǎng)為
1
2n
(a+b+c).
點(diǎn)評(píng):本題考查的是相似三角形的判定與性質(zhì),(1)根據(jù)三角形的中位線得到新三角形與原來(lái)的三角形相似,并且相似比為
1
2
,利用相似三角形周長(zhǎng)的比等于相似比,求出第一個(gè)新三角形的周長(zhǎng).(2)根據(jù)第二個(gè)三角形的周長(zhǎng)進(jìn)行分析,尋找規(guī)律,得到第n個(gè)三角形的周長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖△ABC的頂點(diǎn)坐標(biāo)分別為A(-4,-3),B(0,-3),C(-2,1),如將B點(diǎn)向右平移2個(gè)單位后再向上平移4個(gè)單位到達(dá)B1點(diǎn),若設(shè)△ABC的面積為S1,△AB1C的面積為S2,則S1,S2的大小關(guān)系為(  )
A、S1>S2B、S1=S2C、S1<S2D、不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖△ABC的頂點(diǎn)坐標(biāo)分別為A(-4,-3),B(0,-3),C(-2,1),如將B點(diǎn)向右平移2個(gè)單位后再向上平移4個(gè)單位到達(dá)B1點(diǎn),若設(shè)△ABC的面積為S1,△AB1C的面積為S2,則S1,S2的大小關(guān)系為s1
 
s2(填“<”、“>”、“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知:如圖△ABC的頂點(diǎn)坐標(biāo)分別為A(-4,-3),B(0,-3),C(-2,1),如將B點(diǎn)向右平移2個(gè)單位后再向上平移4個(gè)單位到達(dá)B1點(diǎn),若設(shè)△ABC的面積為S1,△AB1C的面積為S2
(1)畫(huà)出△AB1C;
(2)求點(diǎn)B1的坐標(biāo);
(3)比較S1,S2的大小,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年5月湖北省隨州市曾都區(qū)十校聯(lián)考初三數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•濟(jì)南)已知:如圖△ABC的頂點(diǎn)坐標(biāo)分別為A(-4,-3),B(0,-3),C(-2,1),如將B點(diǎn)向右平移2個(gè)單位后再向上平移4個(gè)單位到達(dá)B1點(diǎn),若設(shè)△ABC的面積為S1,△AB1C的面積為S2,則S1,S2的大小關(guān)系為( )

A.S1>S2
B.S1=S2
C.S1<S2
D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案