【題目】已知關(guān)于x的方程mx2﹣(m+2)x+2=0
(1)求證:不論m為何值,方程總有實(shí)數(shù)根;
(2)若方程的一個(gè)根是2,求m的值及方程的另一個(gè)根.
【答案】(1)證明見(jiàn)解析(2)1,1
【解析】
試題分析:(1)分類討論:當(dāng)m=0時(shí),方程為一元一次方程,有一個(gè)實(shí)數(shù)解;當(dāng)m≠0時(shí),計(jì)算判別式得到△=(m﹣2)2≥0,則方程有兩個(gè)實(shí)數(shù)解,于是可判斷不論m為何值,方程總有實(shí)數(shù)根;
(2)設(shè)方程的另一個(gè)根為t,利用根與系數(shù)的關(guān)系得到2+t=,2t=,然后解關(guān)于t與m的方程組即可.
試題解析:(1)證明:當(dāng)m=0時(shí),方程變形為﹣2x+2=0,解得x=1;
當(dāng)m≠0時(shí),△=(m+2)2﹣4m2=(m﹣2)2≥0,方程有兩個(gè)實(shí)數(shù)解,
所以不論m為何值,方程總有實(shí)數(shù)根;
(2)設(shè)方程的另一個(gè)根為t,
根據(jù)題意得2+t=,2t=,
則2+t=1+2t,解得t=1,
所以m=1,
即m的值位1,方程的另一個(gè)根為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣2kx+k2+k﹣2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若k為正整數(shù),求k的值及此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB⊥BC,DC⊥BC,B、C分別是垂足,DE交AC于M,BC=CD,AB=EC,DE與AC有什么關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣6x﹣k2=0(k為常數(shù)).
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)x1,x2為方程的兩個(gè)實(shí)數(shù)根,且x1+2x2=14,試求出方程的兩個(gè)實(shí)數(shù)根和k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓心相同,半徑不相等的兩個(gè)圓叫做同心圓,用大圓的面積減去小圓的面積就是圓環(huán)的面積.
(1)如圖1,大圓的弦AB切小圓于點(diǎn)P,求證:AP=BP;
(2)若AB=2a,請(qǐng)用含有a的代數(shù)式表示圖1中的圓環(huán)面積;
(3)如圖2,若大圓的弦AB交小圓于C、D兩點(diǎn),且AB=8,CD=6,則圓環(huán)的面積為 ____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列不是具有相反意義的量是( )
A.前進(jìn)5米和后退5米
B.收入30元和支出10元
C.向東走10米和向北走10米
D.超過(guò)5克和不足2克
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,AC與BD相交于O點(diǎn),OC=OA,若E是CD上任意一點(diǎn),連接BE交AC于點(diǎn)F,連接DF.
(1)證明:△CBF≌△CDF;
(2)若AC=2,BD=2,求四邊形ABCD的周長(zhǎng);
(3)請(qǐng)你添加一個(gè)條件,使得∠EFD=∠BAD,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果+3噸表示運(yùn)入倉(cāng)庫(kù)的大米噸數(shù), 那么運(yùn)出5噸大米表示為( )
A.-3噸
B.+3噸
C.-5噸
D.+5噸
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分11分)學(xué)之道在于悟.希望同學(xué)們?cè)趩?wèn)題(1)解決過(guò)程中有所悟,再繼續(xù)探索研究問(wèn)題(2).
(1)如圖①,∠B=∠C,BD=CE,AB=DC.
①求證:△ADE為等腰三角形.
②若∠B=60°,求證:△ADE為等邊三角形.
(2)如圖②,射線AM與BN,AM⊥AB,BN⊥AB,點(diǎn)P是AB上一點(diǎn),在射線AM與BN上分別作點(diǎn)C、點(diǎn)D滿足:△CPD為等腰直角三角形.(要求:利用直尺與圓規(guī),不寫(xiě)作法,保留作圖痕跡)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com