【題目】已知:如圖,在⊙O中,直徑AB的長為10cm,弦AC的長為6cm,∠ACB的平分線交⊙O于點D,求BC,AD和BD的長。
【答案】cm, AD=BD=cm
【解析】試題分析:
如圖,連接BD,由AB是⊙O直徑可得∠ACB=∠ADB=90°,結(jié)合AC=6,AB=10由勾股定理即可解得:BC=8;由CD平分∠ACB可得∠ACD=∠BCD,從而可得,進(jìn)一步可得AD=BD,這樣△ABD是等腰直角三角形,結(jié)合AB=10,由AD=sin∠45°×10即可求出AD和BD的長.
試題解析:
∵AB為⊙O直徑,
∴∠ACB=∠ADB=90°
在Rt△ACB中,
(cm)
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴,
∴AD=BD
在等腰Rt△ADB中,
AD=BD= (cm)
∴BC=8cm,AD=BD=cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為3cm,B為⊙O外一點,OB交⊙O于點A,AB=OA,動點P從點A出發(fā),以πcm/s的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當(dāng)點P運動的時間為____________s時,BP與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示(1<x=h<2,0<xA<1),下列結(jié)論:① 2a+b>0;② abc<0;③ 若OC=2OA,則2b-ac = 4;④ 3a﹣c<0,其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點P(1,﹣4)、Q(m,n)在函數(shù)(x>0)的圖象上,當(dāng)m>1時,過點P分別作x軸、y軸的垂線,垂足為點A,B;過點Q分別作x軸、y軸的垂線,垂足為點C、D.QD交PA于點E,隨著m的增大,四邊形ACQE的面積( )
A.減小 B.增大 C.先減小后增大 D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+3與反比例函數(shù)y=的圖像相交于點B(a,5),且與x軸相交于點A
(1)求反比例函數(shù)的表達(dá)式.
(2)若P為反比例函數(shù)圖像上一點,且△AOP的面積是△AOB的面積的,請求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=(m<0)位于第二象限的圖像上的一個動點,過點A作AC⊥x
軸于點C;M為是線段AC的中點,過點M作AC的垂線,與反比例函數(shù)的圖像及y軸分別交于B、
D兩點.順次連接A、B、C、D.設(shè)點A的橫坐標(biāo)為n.
(1)求點B的坐標(biāo)(用含有m、n的代數(shù)式表示);
(2)求證:四邊形ABCD是菱形;
(3)若△ABM的面積為2,當(dāng)四邊形ABCD是正方形時,求直線AB的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,對角線AC.BD相交于點O,下列結(jié)論不一定正確的是( )
A.AC=BDB.OB=OCC.∠BCD=∠BDCD.∠ABD=∠ACD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時間的函數(shù)關(guān)系,下列說法中錯誤的是( )
A. 第3分時汽車的速度是40千米/時
B. 第12分時汽車的速度是0千米/時
C. 從第3分到第6分,汽車行駛了120千米
D. 從第9分到第12分,汽車的速度從60千米/時減少到0千米/時
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com