如圖,在矩形紙片ABCD中,AB=6,BC=8.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.

(1)求證:△ABG≌△C′DG;

(2)求tan∠ABG的值;

(3)求EF的長.

考點:翻折變換(折疊問題);全等三角形的判定與性質(zhì);矩形的性質(zhì);解直角三角形。

解答:(1)證明:∵△BDC′由△BDC翻折而成,

∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,

∴∠ABG=∠ADE,

在:△ABG≌△C′DG中,

,

∴△ABG≌△C′DG;

(2)解:∵由(1)可知△ABG≌△C′DG,

∴GD=GB,

∴AG+GB=AD,設(shè)AG=x,則GB=8﹣x,

在Rt△ABG中,

∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,

∴tan∠ABG===;

(3)解:∵△AEF是△DEF翻折而成,

∴EF垂直平分AD,

∴HD=AD=4,

∴tan∠ABG=tan∠ADE=,

∴EH=HD×=4×=

∵EF垂直平分AD,AB⊥AD,

∴HF是△ABD的中位線,

∴HF=AB=×6=3,

∴EF=EH+HF=+3=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在矩形紙片ABCD中,AB=8,BC=6,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A′處,則AE的長為
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都一模)如圖,在矩形紙片ABCD中,AB=3,BC=4,把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合,則EF=
25
12
25
12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃石模擬)如圖,在矩形紙片ABCD中,AB=3,BC=4.把△BCD沿對角線BD折疊,使點C落在E處,BE交AD于點F;
(1)求證:AF=EF;
(2)求tan∠ABF的值;
(3)連接AC交BE于點G,求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形紙片ABCD中,AB=8,BC=10.E、F為AB、BC邊上兩個動點,以EF為折痕折疊紙片,使點B恰好落在AD邊上的點P處.當E、F運動時,點P也在一定范圍內(nèi)移動,則這個移動范圍的最大距離為
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

動手操作:如圖,在矩形紙片ABCD中,AB=3,AD=5.如圖所示折疊紙片,使點A落在BC邊上的A′處,折痕為PQ,當點A′在BC邊上移動時,折痕的端點P、Q也隨之移動.若限定點P、Q分別在AB、AD邊上移動.
求:(1)當點Q與點D重合時,A′C的長是多少?
(2)點A′在BC邊上可移動的最大距離是多少?

查看答案和解析>>

同步練習冊答案