【題目】如圖,已知一周長(zhǎng)為30cm的圓形軌道上有相距10cm的A、B兩點(diǎn) (備注:圓形軌道上兩點(diǎn)的距離是指圓上這兩點(diǎn)間較短部分展直后的線段長(zhǎng)).動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以a cm/s的速度,在軌道上按逆時(shí)針方向運(yùn)動(dòng),與此同時(shí),動(dòng)點(diǎn)Q從B出發(fā),以3 cm/s的速度,按同樣的方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t (s),當(dāng)t = 5時(shí),動(dòng)點(diǎn)P、Q第一次相遇.
(1)求a的值;
(2)若a > 3,在P、Q第二次相遇前,當(dāng)動(dòng)點(diǎn)P、Q在軌道上相距12cm時(shí),求t的值.
【答案】(1)a=1或a=7;(2)t的值為0.5、2、8或9.5.
【解析】試題分析:(1)根據(jù)相遇時(shí),點(diǎn)P和點(diǎn)Q的運(yùn)動(dòng)的路程和等于AB的長(zhǎng)列方程即可求解;
(2)設(shè)經(jīng)過ts,P、Q兩點(diǎn)相距12cm,分相遇前和相遇后兩種情況建立方程求出其解;分點(diǎn)P,Q只能在直線AB上相遇,而點(diǎn)P旋轉(zhuǎn)到直線AB上的時(shí)間分兩種情況,所以根據(jù)題意列出方程分別求解.
試題解析:(1)若a<3,則3×5-5a=10,解得:a=1;
若a>3,則5a-3×5=20,解得:a=7;
(2)∵a>3,∴a=7,共有4種可能:
①7t+10-3t=12,解得:t=0.5;
②7t+10-3t=18,解得:t=2;
③7t+10-3t=42,解得:t=8;
④7t+10-3t=48,解得:t=9.5;
綜上所知,t的值為0.5、2、8或9.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.(1)求證:PA是⊙O的切線;
(2)過點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)G,若AG·AB=12,求AC的長(zhǎng);(3)在滿足(2)的條件下,若AF∶FD=1∶2,GF=1,求⊙O的半徑及sin∠ACE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線與滿足,則稱互為“相關(guān)拋物線”給出如下結(jié)論:
①y1與y2的開口方向,開口大小不一定相同; ②y1與y2的對(duì)稱軸相同;③若y2的最值為m,則y1的最值為k2m;④若函數(shù)與x 軸的兩交點(diǎn)間距離為d,則函數(shù)與x 軸的兩交點(diǎn)間距離也為.其中正確的結(jié)論的序號(hào)是___________(把所有正確結(jié)論的序號(hào)都填在橫線上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正比例函數(shù)的圖象經(jīng)過點(diǎn)(-1,2),則此函數(shù)的表達(dá)式為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列關(guān)于x的單項(xiàng)式,探究其規(guī)律:x2,3x4,5x6,7x8,9x10,11x12,…,按照上述規(guī)律,第2019個(gè)單項(xiàng)式是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com