解:(1)令y=0,則-
x+2=0,解得x=4,
令x=0,則y=2,
所以,點(diǎn)A(4,0),B(0,2),
所以,OA=4,OB=2,
tan∠OAB=
=
=
;
(2)根據(jù)勾股定理,AB=
=
=2
,
∵P、Q兩點(diǎn)關(guān)于直線AB軸對稱,
∴∠OAB+∠QPH=90°,
∴sin∠QPH=cos∠OAB=
=
,
cos∠QPH=sin∠OAB=
=
,
∵QH⊥x軸,QH=2,
∴PQ=QH÷sin∠QPH=2÷
=
,
∵P、Q兩點(diǎn)關(guān)于直線AB軸對稱,PQ交AB于點(diǎn)M,
∴PM=
PQ=
,
∴AP=PM÷sin∠OAB=
÷
=
,
①當(dāng)點(diǎn)P在點(diǎn)A的左邊時(shí),OP=OA-AP=4-
=
,
此時(shí),點(diǎn)P的坐標(biāo)是(
,0),
②當(dāng)點(diǎn)P在點(diǎn)A的右邊時(shí),OP=OA+AP=4+
=
,
此時(shí),點(diǎn)P的坐標(biāo)是(
,0);
故,點(diǎn)P的坐標(biāo)為(
,0)或(
,0);
(3)①當(dāng)點(diǎn)P在點(diǎn)A的左邊時(shí),
∵點(diǎn)P的坐標(biāo)為(t,0),
∴AP=4-t,PM=AP•sin∠OAB=
(4-t),
∵P、Q兩點(diǎn)關(guān)于直線AB軸對稱,PQ交AB于點(diǎn)M,
∴PQ=2PM=
(4-t),
QH=PQ•sin∠QPH=
(4-t)×
=
,
PH=PQ•cos∠QPH=
(4-t)×
=
,
當(dāng)點(diǎn)P在點(diǎn)O右側(cè)時(shí),OH=OP+PH=t+
=
,
∵△OQH與△APM相似,
∴
=
=tan∠OAB或
=
=tan∠OAB,
即
=
或
=
,
解得t=0或t=
;
當(dāng)點(diǎn)P在點(diǎn)O左側(cè)時(shí),OH=OP-PH=(-t)-
=-
,
∵△OQH與△APM相似,
∴
=
=tan∠OAB或
=
=tan∠OAB,
即
=
或
=
,
解得t=-16或t=8(舍去);
②當(dāng)點(diǎn)P在點(diǎn)A的左邊時(shí),
∵點(diǎn)P的坐標(biāo)為(t,0),
∴AP=t-4,PM=AP•sin∠OAB=
(t-4),
∵P、Q兩點(diǎn)關(guān)于直線AB軸對稱,PQ交AB于點(diǎn)M,
∴PQ=2PM=
(t-4),
QH=PQ•sin∠QPH=
(t-4)×
=
,
PH=PQ•cos∠QPH=
(t-4)×
=
,
∴OH=OP-PH=t-
=
,
∵△OQH與△APM相似,
∴
=
=tan∠OAB或
=
=tan∠OAB,
即
=
或
=
,
解得t=-16(舍去)或t=8,
綜上所述,存在t的值,t=0或t=
或t=-16或t=8,使△OQH與△APM相似.
分析:(1)根據(jù)直線解析式求出點(diǎn)A、B的坐標(biāo),從而得到OA、OB的長度,再根據(jù)銳角的正切值等于對邊比鄰邊列式計(jì)算即可得解;
(2)根據(jù)勾股定理求出AB的長度,再根據(jù)∠QPH的正弦等于∠OAB的余弦求出QP的長,然后根據(jù)軸對稱的性質(zhì)求出PM的長,再利用∠OAB的正弦值求出AP的長,再分點(diǎn)P在點(diǎn)A的左邊與右邊兩種情況求出OP的長度,即可得到點(diǎn)P的坐標(biāo);
(3)分點(diǎn)P在點(diǎn)A的左邊與右邊兩種情況,根據(jù)點(diǎn)P的坐標(biāo)表示出AP的長,再利用∠OAB的正弦值表示出PM,根據(jù)軸對稱的性質(zhì)表示出PQ,利用∠QPH的正弦表示出QH,余弦表示出PH,從而可以表示出OH,再根據(jù)兩邊對應(yīng)成比例,夾角相等,兩三角形相似,分兩種情況列式求解即可.
點(diǎn)評(píng):本題是對一次函數(shù)的綜合考查,主要涉及一次函數(shù)與坐標(biāo)軸的交點(diǎn),銳角三角形函數(shù),相似三角形對應(yīng)邊成比例,解直角三角形,(2)要分點(diǎn)P在點(diǎn)A的左右兩邊兩種情況討論,(3)根據(jù)點(diǎn)P的位置的不同,分別列出OH的不同表示是解題的關(guān)鍵,還要根據(jù)相似三角形對應(yīng)邊不明確需要分情況討論.