【題目】某超市對進貨價為10元/千克的某種蘋果的銷售情況進行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

(2)應怎樣確定銷售價,使該品種蘋果的每天銷售利潤最大?最大利潤是多少?

【答案】(1);(2)當銷售單價為20元/千克時,每天可獲得最大利潤200元.

【解析】

試題分析:(1)由圖象過點(20,20)和(30,0),利用待定系數(shù)法求直線解析式;

(2)每天利潤=每千克的利潤×銷售量.由此列出表達式,然后用函數(shù)性質(zhì)解答.

試題解析:(1)設(shè),由圖象可知,,解之,得:;

(2)p=(x﹣10)y=(x﹣10)(﹣2x+60)==,a=﹣2<0,p有最大值,當x=20時,p最大值=200.

即當銷售單價為20元/千克時,每天可獲得最大利潤200元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形的兩邊分別為37,則此三角形的第三邊可能是( )

A. 3 B. 4 C. 5 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)點A(m,n)在x軸上,且位于原點的左側(cè),則下列結(jié)論正確的是( )

A. m=0,n為一切數(shù) B. m=0,n<0

C. m為一切數(shù),n=0 D. m<0,n=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD是矩形,AD∥x軸,A(,),AB=1,AD=2.

(1)直接寫出B、C、D三點的坐標;

(2)將矩形ABCD向右平移m個單位,使點A、C恰好同時落在反比例函數(shù))的圖象上,得矩形A′B′C′D′.求矩形ABCD的平移距離m和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知線段AB=16cm,點C為線段AB上的一個動點,點D、E分別是AC和BC的中點.

(1)若點C恰為AB的中點,求DE的長;
(2)若AC=6cm,求DE的長;
(3)試說明不論AC取何值(不超過16cm),DE的長不變;
(4)知識遷移:如圖2,已知∠AOB=130°,過角的內(nèi)部任一點C畫射線OC,若OD、OE分別平分∠AOC和∠BOC,試說明∠DOE=65°與射線OC的位置無關(guān).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用科學記數(shù)法表示0.0000907=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】命題“任何一個角的補角都不小于這個角”是 命題(填“真”或“假”);若是假命題,舉個反例:______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點E,∠CBD=90°,BC=4,BE=ED=3,AC=10,則四邊形ABCD的面積為(
A.6
B.12
C.20
D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB∥CD,AB⊥BC,點E在AB邊上從A向B以1cm/s的速度移動,同時點F在CD邊上從C向D以2cm/s的速度移動,若AB=7cm,CD=9cm,則 秒時四邊形ADFE是平行四邊形.

查看答案和解析>>

同步練習冊答案