函數(shù)y=
5-x
+
1
x-2
中,自變量x的取值范圍為
x≤5且x≠2
x≤5且x≠2
分析:根據(jù)被開(kāi)方數(shù)大于等于0,分母不等于0列式求解即可.
解答:解:根據(jù)題意得,5-x≥0且x-2≠0,
解得x≤5且x≠2.
故答案為:x≤5且x≠2.
點(diǎn)評(píng):本題主要考查了函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個(gè)方面考慮:
(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);
(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;
(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開(kāi)方數(shù)為非負(fù)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在函數(shù)y=
2x-5
+
1
x-3
中自變量x的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+1
x-1
,則f(
3
)
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
3-x
+
1
x-2
中自變量x的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題背景:
若矩形的周長(zhǎng)為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長(zhǎng)為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x
(x>0),利用函數(shù)的圖象或通過(guò)配方均可求得該函數(shù)的最大值.
提出新問(wèn)題:
若矩形的面積為1,則該矩形的周長(zhǎng)有無(wú)最大值或最小值?若有,最大(。┲凳嵌嗌?
分析問(wèn)題:
若設(shè)該矩形的一邊長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問(wèn)題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
解決問(wèn)題:
借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担
(1)實(shí)踐操作:填寫(xiě)下表,并用描點(diǎn)法畫(huà)出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
x 1/4 1/3 1/2 1 2 3 4
y
17
2
20
3
5 4 5
20
3
17
2
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=
1
1
時(shí),函數(shù)y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:?jiǎn)栴}背景中提到,通過(guò)配方可求二次函數(shù)s=-x2+
1
2
x
(x>0)的最大值,請(qǐng)你嘗試通過(guò)配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲,以證明你的猜想.〔提示:當(dāng)x>0時(shí),x=(
x
)2

查看答案和解析>>

同步練習(xí)冊(cè)答案