【題目】定義:如圖1,平面上兩條直線ABCD相交于點O,對于平面內(nèi)任意一點M,點M到直線AB、CD的距離分別為pq,則稱有序?qū)崝?shù)對(p,q)是點M的“距離坐標”,根據(jù)上述定義,“距離坐標”為(0,0)的點有1個,即點O

(1)“距離坐標”為1,0的點有 個;

(2)如圖2,若點M在過點O且與直線AB垂直的直線l上時,點M的“距離坐標”為p,q,且BOD 150,請寫出p、q的關系式并證明;

(3)如圖3,點M的“距離坐標”為,且DOB 30,求OM的長.

【答案】(1)2;(2);(3)

【解析】

1)根據(jù)距離坐標的定義結(jié)合圖形判斷即可;

2)過MMNCDN,根據(jù)已知得出,求出∠MON60°,根據(jù)含30度直角三角形的性質(zhì)和勾股定理求出即可解決問題;

3)分別作點關于、的對稱點、,連接、,連接分別交、點、點,首先證明,求出,,然后過,交延長線于,根據(jù)含30度直角三角形的性質(zhì)求出,,再利用勾股定理求出EF即可.

解:(1)由題意可知,在直線CD上,且在點O的兩側(cè)各有一個,共2個,

故答案為:2;

2)過,

∵直線,

,

,,

,

,

3)分別作點關于、的對稱點,連接、、,連接分別交、點、點.

,

,,

OEF是等邊三角形,

,,

,

,

,交延長線于,

,

中,,則

中,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:

b2=4ac;abc>0;a>c;4a﹣2b+c>0,其中正確的個數(shù)有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 中,C=90°,將ABC 繞點 C 順時針旋轉(zhuǎn) 90°,得到DEC其中點 DE 分別是 A、B 兩點旋轉(zhuǎn)后的對應點).

(1)請畫出旋轉(zhuǎn)后的△DEC;

(2)試判斷 DE AB 的位置關系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚內(nèi)溫度y()隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18的時間有多少小時?

(2)求k的值;

(3)當x=16時,大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】母親節(jié)前期,某花店購進康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍.

(1)求降價后每枝玫瑰的售價是多少元?

(2)根據(jù)銷售情況,店主用不多于900元的資金再次購進兩種鮮花共500枝,康乃馨進價為2/枝,玫瑰進價為1.5/枝,問至少購進玫瑰多少枝?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,平分,點的中點,若,則的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司10名銷售員,去年完成的銷售額情況如表:

銷售額(單位:萬元)

3

4

5

6

7

8

10

銷售員人數(shù)(單位:人)

1

3

2

1

1

1

1

(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);

(2)今年公司為了調(diào)動員工積極性,提高年銷售額,準備采取超額有獎的措施,請根據(jù)(1)的結(jié)果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標準是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個滑道由滑坡(AB段)和緩沖帶(BC段)組成,滑雪者在滑坡上滑行的距離y1(單位:m)和滑行時間t1(單位s)滿足二次函數(shù)關系,并測得相關數(shù)據(jù):

滑行時間t1/s

0

1

2

3

4

滑行距離y1/s

0

4.5

14

28.5

48

滑雪者在緩沖帶上滑行的距離y2(單位:m)和滑行時間t2(單位:s)滿足:y2=52t2﹣2t22,滑雪者從A出發(fā)在緩沖帶BC上停止,一共用了23s.

(1)求y1和t1滿足的二次函數(shù)解析式;

(2)求滑坡AB的長度.

查看答案和解析>>

同步練習冊答案