【題目】如圖,在中,,,平分,點(diǎn)的中點(diǎn),若,則的長(zhǎng)為__________

【答案】3

【解析】

過(guò)點(diǎn)DDEABE,根據(jù)直角三角形兩銳角互余求出∠A=30°,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出DE,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得CD=DE,根據(jù)角平分線的定義求出∠CBD=30°,根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出BD,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半求解.

如圖,過(guò)點(diǎn)DDEABE


∵∠ACB=90°,∠ABC=60°,
∴∠A=90°-60°=30°,
DE=AD=×6=3
又∵BD平分∠ABC,
CD=DE=3,
∵∠ABC=60°BD平分∠ABC,
∴∠CBD=30°,
BD=2CD=2×3=6
P點(diǎn)是BD的中點(diǎn),
CP=BD=×6=3
故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,是對(duì)角線上一個(gè)動(dòng)點(diǎn),連結(jié),過(guò),

,分別為垂足.

1)求證:

2)①寫(xiě)出、、三條線段滿足的等量關(guān)系,并證明;②求當(dāng),時(shí),的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABBC,BEAC于點(diǎn)EADBC于點(diǎn)D,∠BAD45°,ADBE交于點(diǎn)F,連接CF.

1)求證△ACD≌△BFD

2)求證:BF2AE;

3)若CD,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖1,平面上兩條直線AB、CD相交于點(diǎn)O,對(duì)于平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線AB、CD的距離分別為pq,則稱(chēng)有序?qū)崝?shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”,根據(jù)上述定義,“距離坐標(biāo)”為(0,0)的點(diǎn)有1個(gè),即點(diǎn)O

(1)“距離坐標(biāo)”為1,0的點(diǎn)有 個(gè);

(2)如圖2,若點(diǎn)M在過(guò)點(diǎn)O且與直線AB垂直的直線l上時(shí),點(diǎn)M的“距離坐標(biāo)”為p,q,且BOD 150,請(qǐng)寫(xiě)出p、q的關(guān)系式并證明;

(3)如圖3,點(diǎn)M的“距離坐標(biāo)”為,且DOB 30,求OM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,,點(diǎn)的中點(diǎn).點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng);同時(shí),點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng).點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng).求當(dāng)運(yùn)動(dòng)時(shí)間為多少秒時(shí),以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一農(nóng)民帶上若干千克自產(chǎn)的土豆進(jìn)城出售,為了方便,他帶了一些零錢(qián)備用,按市場(chǎng)價(jià)售出一些后,又降價(jià)出售,售出的土豆千克數(shù)與他手中持有的錢(qián)數(shù)(含備用零錢(qián))的關(guān)系,如圖所示,結(jié)合圖象回答下列問(wèn)題.

(1)農(nóng)民自帶的零錢(qián)是多少?

(2)試求降價(jià)前yx之間的關(guān)系式

(3)由表達(dá)式你能求出降價(jià)前每千克的土豆價(jià)格是多少?

(4)降價(jià)后他按每千克0.4元將剩余土豆售完,這時(shí)他手中的錢(qián)(含備用零錢(qián))26,試問(wèn)他一共帶了多少千克土豆?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC和ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長(zhǎng)線交BD于點(diǎn)P.

(1)把ABC繞點(diǎn)A旋轉(zhuǎn)到圖1,BD,CE的關(guān)系是   (選填“相等”或“不相等”);簡(jiǎn)要說(shuō)明理由;

(2)若AB=3,AD=5,把ABC繞點(diǎn)A旋轉(zhuǎn),當(dāng)EAC=90°時(shí),在圖2中作出旋轉(zhuǎn)后的圖形,PD=   ,簡(jiǎn)要說(shuō)明計(jì)算過(guò)程;

(3)在(2)的條件下寫(xiě)出旋轉(zhuǎn)過(guò)程中線段PD的最小值為   ,最大值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A108°,BD平分∠ABCAC于點(diǎn)D

1)填空:∠DBC=_________度;

2)猜想:BC、AB、CD三者數(shù)量關(guān)系_____________________

3)證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸,軸分別交于點(diǎn),點(diǎn),過(guò)點(diǎn)軸,垂足為點(diǎn),過(guò)點(diǎn)軸,垂足為點(diǎn),兩條垂線相交于點(diǎn)

1)線段,的長(zhǎng)分別為_______,_________,_________;

2)折疊圖1中的,使點(diǎn)與點(diǎn)重合,再將折疊后的圖形展開(kāi),折痕于點(diǎn),交于點(diǎn),連接,如圖2

①求線段的長(zhǎng);

②在軸上,是否存在點(diǎn),使得為等腰三角形?若存在,請(qǐng)直接寫(xiě)出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案