【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,B點的坐標(biāo)為(3,0),與y軸交于點C0,﹣3),點P是直線BC下方拋物線上的任意一點,過點P作平行于y軸的直線PM,交線段BCM,當(dāng)PCM是以PM為腰的等腰三角形時,點P的坐標(biāo)是(  )

A.2,-3)或(+1,—2B.2,-3)或(,-1-2

C.2,-3)或(,-1-2D.2-3)或(3-,2-4

【答案】D

【解析】

根據(jù)待定系數(shù)法,求得函數(shù)解析式,然后求出直線BC的解析式,設(shè)設(shè)Mn,n-3),Pn,n2-2n-3),分情況討論,結(jié)合勾股定理得方程,從而解方程求得n的值,確定點P的坐標(biāo).

解:將B3,0),C0,-3)代入函數(shù)解析式,得

,

解得 ,

∴這個二次函數(shù)的表達(dá)式

由題意可知:點P在第四象限

設(shè)BC的解析式為y=kx+b,

B3,0),C0-3)的坐標(biāo)代入函數(shù)解析式,得

解得 ,

BC的解析式為y=x-3

過點PPHx軸于點H,與線段BC交于點M,連接PC

設(shè)Mn,n-3),Pn,n2-2n-3),
PM=n-3-n2-2n-3=-n2+3n=

當(dāng)PM=PC時,根據(jù)勾股定理可得:

解得n1=n2=0(不符合題意,舍),n3=2,

n2-2n-3=-3,

P2,-3).

當(dāng)PM=MC時,根據(jù)勾股定理可得:

解得n1=0(不符合題意,舍),n2=3-n3=3+(不符合題意,舍),
n2-2n-3=2-4

P3-,2-4

綜上所述:P2,-3)或(3-2-4).

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列不等式(組)

(1)

2

3 (并在數(shù)軸上表示出解集

4 (解不等式組并寫出整數(shù)解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC,AB=AC,E是邊AC上一點,過點EEFBCAB于點F

(1)如圖①,求證AE=AF;

(2)如圖②,AEF繞點A逆時針旋轉(zhuǎn)α(0°<α<144°)得到AEF.連接CEBF′.

BF′=6,CE的長;

EBC=∠BAC=36°,在圖的旋轉(zhuǎn)過程中,當(dāng)CE′∥AB,直接寫出旋轉(zhuǎn)角α的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點為圓心,作軸于、兩點,交軸于、兩點,連結(jié)并延長交于點,連結(jié)軸于點,連結(jié),.

1)求弦的長;

2)求直線的函數(shù)解析式;

3)連結(jié),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】跳繩時,繩甩到最高處時的形狀是拋物線. 正在甩繩的甲、乙兩名同學(xué)拿繩的手間距AB6米,到地面的距離AOBD均為0. 9米,身高為1. 4米的小麗站在距點O的水平距離為1米的點F處,繩子甩到最高處時剛好通過她的頭頂點E. 以點O為原點建立如圖所示的平面直角坐標(biāo)系, 設(shè)此拋物線的解析式為.

1)求該拋物線的解析式;

2)如果身高為1. 85米的小華也想?yún)⒓犹K,問繩子能否順利從他頭頂越過?請說明理由;

3)如果一群身高在1. 4米到1. 7米之間的人站在OD之間,且離點O的距離為t, 繩子甩到最高處時必須超過他們的頭頂,請結(jié)合圖像,寫出t的取值范圍_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點MBA的延長線上,MD切⊙O于點D,過點BBNMD于點C,連接AD并延長,交BN于點N

1)求證:AB=BN;

2)若MD=4,CD=2.4,求 。

3)若AM=2CN=1.2,求⊙O的半徑長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地面上有一個不規(guī)則的封閉圖形ABCD,為求得它的面積,小明在此封閉圖形內(nèi)畫出一個半徑為2米的圓后,在附近閉上眼睛向封閉圖形內(nèi)擲小石子(可把小石子近似地看成點),記錄如下:

擲小石子落在不規(guī)則圖形內(nèi)的總次數(shù)

50

150

300

小石子落在圓內(nèi)(含圓上)的次數(shù)m

20

59

123

小石子落在圓外的陰影部分(含外緣)的次數(shù)n

29

91

176

1)當(dāng)投擲的次數(shù)很大時,則mn的值越來越接近   (結(jié)果精確到0.1

2)若以小石子所落的有效區(qū)域為總數(shù)(即m+n),則隨著投擲次數(shù)的增大,小石子落在圓內(nèi)(含圓上)的頻率值穩(wěn)定在   附近(結(jié)果精確到0.1);

3)請你利用(2)中所得頻率的值,估計整個封閉圖形ABCD的面積是多少平方米?(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與坐標(biāo)軸交于A(﹣4,0)、B2,0)、C0,4),連接BC,AC

1)求拋物線的解析式;

2)若點E是拋物線在第二象限上的一點,過點EDEAC于點D,求DE的最大值.

3)若點E是拋物線上第二象限上的一動點,過點EDEAC于點D,連接CE,若△CDE與△COB相似,直接寫出點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表顯示的是某種大豆在相同條件下的發(fā)芽試驗結(jié)果:

每批粒數(shù)n

100

300

400

600

1000

2000

3000

發(fā)芽的粒數(shù)m

96

282

382

570

948

1904

2850

發(fā)芽的頻率

0.960

0.940

0.955

0.950

0.948

0.952

0.950

下面有三個推斷:

當(dāng)n為400時,發(fā)芽的大豆粒數(shù)為382,發(fā)芽的頻率為0.955,所以大豆發(fā)芽的概率是0.955;

隨著試驗時大豆的粒數(shù)的增加,大豆發(fā)芽的頻率總在0.95附近擺動,顯示出一定的穩(wěn)定性,可以估計大豆發(fā)芽的概率是0.95;

若大豆粒數(shù)n為4000,估計大豆發(fā)芽的粒數(shù)大約為3800粒.

其中推斷合理的是(  )

A. ①②③ B. ①② C. ①③ D. ②③

查看答案和解析>>

同步練習(xí)冊答案