(2012•溫州)如圖,在方格紙中的三個頂點及A、B、C、D、E五個點都在小方格的頂點上.現(xiàn)以A、B、C、D、E中的三個點為頂點畫三角形.
(1)在圖甲中畫出一個三角形與△PQR全等;
(2)在圖乙中畫出一個三角形與△PQR面積相等但不全等
分析:(1)過A作AE∥PQ,過E作EB∥PR,再順次連接A、E、B,此題答案不唯一,符合要求即可;
(2)△PQR面積是:
1
2
×QR×PQ=6,連接BA,BA長為3,再連接AD、BD,三角形的面積也是6,但是兩個三角形不全等.
解答:解:(1)如圖所示:
;
(2)如圖所示:
點評:此題主要考查了作圖,關鍵是掌握全等三角形的定義:能夠完全重合的兩個三角形叫做全等三角形;三角形面積的計算公式:S=
1
2
×底×高.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•溫州)如圖,經(jīng)過原點的拋物線y=-x2+2mx(m>0)與x軸的另一個交點為A.過點P(1,m)作直線PM⊥x軸于點M,交拋物線于點B.記點B關于拋物線對稱軸的對稱點為C(B、C不重合).連接CB,CP.
(1)當m=3時,求點A的坐標及BC的長;
(2)當m>1時,連接CA,問m為何值時CA⊥CP?
(3)過點P作PE⊥PC且PE=PC,問是否存在m,使得點E落在坐標軸上?若存在,求出所有滿足要求的m的值,并定出相對應的點E坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•溫州)如圖,已知動點A在函數(shù)y=
4
x
(x>0)
的圖象上,AB⊥x軸于點B,AC⊥y軸于點C,延長CA至點D,使AD=AB,延長BA至點E,使AE=AC.直線DE分別交x軸于點P,Q.當QE:DP=4:9時,圖中陰影部分的面積等于
13
3
13
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•溫州)如圖,△ABC中,∠B=90°,AB=6cm,BC=8cm.將△ABC沿射線BC方向平移10cm,得到△DEF,A,B,C的對應點分別是D,E,F(xiàn),連接AD.求證:四邊形ACFD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•溫州)如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點,連接MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•溫州)如圖,△ABC中,∠ACB=90°,D是邊AB上一點,且∠A=2∠DCB.E是BC邊上的一點,以EC為直徑的⊙O經(jīng)過點D.
(1)求證:AB是⊙O的切線;
(2)若CD的弦心距為1,BE=EO,求BD的長.

查看答案和解析>>

同步練習冊答案