【題目】我國(guó)農(nóng)村勞動(dòng)力人數(shù)有4.8億.從目前來(lái)看,我國(guó)農(nóng)民的科技水平還不高,在農(nóng)村4.8億的勞動(dòng)力中,小學(xué)文化程度以下的占40%,具有初中文化程度的占48%,具有高中文化程度的占12%,受過(guò)職業(yè)技術(shù)培訓(xùn)的占5%,但據(jù)專家統(tǒng)計(jì),他們中八成以上會(huì)進(jìn)行分?jǐn)?shù)、平均數(shù)、增長(zhǎng)率等基本數(shù)學(xué)運(yùn)算,能基本適應(yīng)當(dāng)代經(jīng)濟(jì)生活,這是初等數(shù)學(xué)教育的一大成就.
請(qǐng)根據(jù)上面的數(shù)據(jù)信息解答下列問(wèn)題:
文化程度 | 人數(shù)(億) | 會(huì)基本數(shù)學(xué)運(yùn)算人數(shù)(億) | 百分比 |
小學(xué)以下 | 1.4976 | ||
初中文化 | 2.0736 | 90% | |
高中文化 | 95% | ||
受過(guò)職業(yè)技術(shù)培訓(xùn) | 0.2328 | 97% |
(1)填寫下列農(nóng)民受教育情況及掌握基本數(shù)學(xué)運(yùn)算情況統(tǒng)計(jì)
(2)根據(jù)圖表,求出農(nóng)村勞動(dòng)力中會(huì)進(jìn)行基本數(shù)學(xué)運(yùn)算的總?cè)藬?shù)占農(nóng)村勞動(dòng)力總?cè)藬?shù)的百分比;
(3)政府計(jì)劃兩年后使農(nóng)村勞動(dòng)力初、高中文化程度達(dá)到80%,那么平均每年增長(zhǎng)的百分率是多少(精確到0.1%)?
【答案】(1)詳見解析;(2)90.65%;(3)平均每年的增長(zhǎng)率約為15.5%.
【解析】
(1)根據(jù)農(nóng)村勞動(dòng)力的總?cè)藬?shù)以及受教育的各種情況所占的百分比,求出人數(shù)填表即可解答.
(2)用農(nóng)村勞動(dòng)力中會(huì)進(jìn)行基本數(shù)學(xué)運(yùn)算的總?cè)藬?shù)除以農(nóng)村勞動(dòng)力總?cè)藬?shù)即可解答.
(3)設(shè)平均每年增長(zhǎng)的百分率是x,根據(jù)題意列出一元二次方程解答即可.
(1)小學(xué)一下的人數(shù)為4.8×40%=1.92億人;初中文化的人數(shù)為4.8×48%=2.304億人;高中文化的人數(shù)為4.8×12%=0.576億人;受過(guò)職業(yè)技術(shù)培訓(xùn)的人數(shù)為4.8×5%=0.24億人;
填表如下:
文化程度 | 人數(shù)(億) | 會(huì)基本數(shù)學(xué)運(yùn)算人數(shù)(億) | 百分比 |
小學(xué)以下 | 1.92 | 1.4976 | 78% |
初中文化 | 2.304 | 2.0736 | 90% |
高中文化 | 0.576 | 0.5472 | 95% |
受過(guò)職業(yè)技術(shù)培訓(xùn) | 0.24 | 0.2328 | 97% |
(2)=90.65%.
(3)設(shè)平均每年的增長(zhǎng)率是x,
則60%(1+x)2=80%,
解得x1≈0.155,x2≈﹣2.155(不符合題意,舍去).
答:平均每年的增長(zhǎng)率約為15.5%.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的頂點(diǎn)A在y軸正半軸上,邊BC在x軸上,且BC=5,sin∠ABC=,反比例函數(shù)(x>0)的圖象分別與AD,CD交于點(diǎn)M、點(diǎn)N,點(diǎn)N的坐標(biāo)是(3,n),連接OM,MC.
(1)求反比例函數(shù)的解析式;
(2)求證:△OMC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高節(jié)水意識(shí),小申隨機(jī)統(tǒng)計(jì)了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計(jì)圖.(單位:升)
(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);
(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;
(3)請(qǐng)你根據(jù)統(tǒng)計(jì)圖中的信息,給小申家提出一條全理的節(jié)約用水建議,并估算采用你的建議后小申家一個(gè)月(按30天計(jì)算)的節(jié)約用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD,點(diǎn)P在射線CB上運(yùn)動(dòng)(不包含點(diǎn)B、C),連接DP,交AB于點(diǎn)M,作BE⊥DP于點(diǎn)E,連接AE,作∠FAD=∠EAB,FA交DP于點(diǎn)F.
(1)如圖a,當(dāng)點(diǎn)P在CB的延長(zhǎng)線上時(shí),
①求證:DF=BE;
②請(qǐng)判斷DE、BE、AE之間的數(shù)量關(guān)系并證明;
(2)如圖b,當(dāng)點(diǎn)P在線段BC上時(shí),DE、BE、AE之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出答案,不必證明;
(3)如果將已知中的正方形ABCD換成矩形ABCD,且AD:AB=:1,其他條件不變,當(dāng)點(diǎn)P在射線CB上時(shí),DE、BE、AE之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出答案,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問(wèn)題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論中正確的有( )
①4ac<b2
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3
③3a+c>0
④當(dāng)y>0時(shí),取值范圍是﹣1≤x≤3
A. ①②B. ①②③C. ①③④D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小雨、小華、小星暑假到某超市參加社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參加了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8元/千克.他們通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn):當(dāng)銷售單價(jià)為10元時(shí),那么每天可售出300千克;銷售單價(jià)每上漲1元,每天的銷售量就減少50千克.
(1)求該超市銷售這種水果,每天的銷售量y(千克)與銷售單價(jià)x(元/千克)之間的函數(shù)關(guān)系式;
(2)一段時(shí)間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于250千克,則此時(shí)該超市銷售這種水果每天獲取的利潤(rùn)w(元)最大是多少?
(3)為響應(yīng)政府號(hào)召,該超市決定在暑假期間每銷售1千克這種水果就捐贈(zèng)a元利潤(rùn)(a≤2.5)給希望工程.公司通過(guò)銷售記錄發(fā)現(xiàn),當(dāng)銷售單價(jià)不超過(guò)13元時(shí),每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨銷售單價(jià)x(元/千克)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑作⊙O,過(guò)點(diǎn)A作⊙O的切線AC,連結(jié)BC,交⊙O于點(diǎn)D,點(diǎn)E是BC邊的中點(diǎn),連結(jié)AE.
(1)求證:∠AEB=2∠C;
(2)若AB=6,,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是等腰三角形,O是底邊BC中點(diǎn),腰AB與⊙O相切于點(diǎn)D
(1)求證:AC是⊙O的切線;
(2)如圖2,連接CD,若tan∠BCD=,⊙O的半徑為,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com