【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點(diǎn)E,AD⊥CE于點(diǎn)D.求證:
(1)△BEC≌△CDA;
(2)DE=AD﹣BE.
【答案】
(1)證明:∵∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,
在△CDA和△BEC中,
,
∴△CDA≌△BEC(AAS)
(2)證明:∵△CDA≌△BEC,
∴CD=BE,CE=AD,
∵DE=CE﹣CD,
∴DE=AD﹣BE
【解析】(1)易證∠CAD=∠BCE,即可證明△CDA≌△BEC,即可解題;(2)根據(jù)(1)中結(jié)論可得CD=BE,CE=AD,根據(jù)DE=CE﹣CD,即可解題.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等腰直角三角形,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“☆”定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a、b,都有a☆b=b2+1.例如7☆4=42+1=17,那么5☆3=;當(dāng)m為實(shí)數(shù)時(shí),m☆(m☆2)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】多項(xiàng)式x2y﹣xy2+3xy﹣1的次數(shù)與項(xiàng)數(shù)分別是( 。
A. 2,4B. 3,3C. 3,4D. 8,4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】x<0,y>0時(shí),則x,x+y,x﹣y,y中最小的數(shù)是( )
A.x
B.x﹣y
C.x+y
D.y
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】,小紅同學(xué)在知道自己成績(jī)的情況下,要判斷自己能否進(jìn)入決賽,還需要知道這9名同學(xué)成績(jī)的( )
A.眾數(shù)
B.中位數(shù)
C.平均數(shù)
D.極差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)F.
求證:BF=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】n是一個(gè)正整數(shù),則10n表示的是( 。
A. 10個(gè)n相乘所得的結(jié)果B. n個(gè)10相乘所得的結(jié)果
C. 10后面有n個(gè)0的數(shù)D. 是一個(gè)n位整數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com