在直角△ABC中,∠C=90°,AC=3,BC=4,那么以C為圓心與AB相切的圓的半徑是   
【答案】分析:首先根據(jù)題意作圖,由AB是⊙C的切線,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根據(jù)勾股定理求得AB的長(zhǎng),然后由S△ABC=AC•BC=AB•CD,即可求得以C為圓心與AB相切的圓的半徑的長(zhǎng).
解答:解:如圖:連接CD,
∵AB是⊙C的切線,
∴CD⊥AB,
∵在直角△ABC中,∠C=90°,AC=3,BC=4,
∴AB=5,
∵S△ABC=AC•BC=AB•CD,
∴AC•BC=AB•CD,
即CD===
故答案為:
點(diǎn)評(píng):此題考查了圓的切線的性質(zhì),勾股定理,以及直角三角形斜邊上的高的求解方法.此題難度不大,解題的關(guān)鍵是注意輔助線的作法與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D,若AP平分∠BAC交BD于P,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在直角△ABC中,AD=DE=EB,且CD2+CE2=1,則斜邊AB的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角△ABC中,∠C=90°,若AB=5,AC=4,則tan∠B=(  )
A、
3
5
B、
4
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角△ABC中,∠C=90°,AB的垂直平分線交AB于D,交AC于F,且BE平分∠ABC,則∠A=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角△ABC中,∠A=90°,BC邊上的垂直平分線交AC于點(diǎn)D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,則△BDE的周長(zhǎng)為
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案