【題目】如圖,點P是正方形ABCD的對角線BD上的一個動點(不與B、D重合),連結(jié)AP,過點B作直線AP的垂線,垂足為H,連結(jié)DH.若正方形的邊長為4,則線段DH長度的最小值是 .
【答案】2 ﹣2
【解析】解:如圖,取AB的中點O,連接OH、OD,
則OH=AO= AB=2,
在Rt△AOD中,OD= = =2 ,
根據(jù)三角形的三邊關(guān)系,OH+DH>OD,
∴當(dāng)O、D、H三點共線時,DH的長度最小,
DH的最小值=OD﹣OH=2 ﹣2.
所以答案是:2 ﹣2.
【考點精析】認(rèn)真審題,首先需要了解正方形的性質(zhì)(正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形),還要掌握點和圓的三種位置關(guān)系(圓和點的位置關(guān)系:以點P與圓O的為例(設(shè)P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=90.E是AC邊上的一點,延長BA至D,使AD=AE,連接DE,CD.
(l)圖中是否存在兩個三角形全等?如果存在請寫出哪兩個三角形全等,并且證明;如果不存在,請說明理由;
(2)若∠CBE=30,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P在AC上,點Q在AB上,BE平分∠ABP,交AC于E,CF平分∠ACQ,交AB于F,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC=110°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是雙曲線y= 在第一象限的分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y= (k<0)上運動,則k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B在線段AF上,分別以AB、BF為邊在線段AF的同側(cè)作正方形ABCD和正方形BFGE,連接CF和DE,CF交EG于H.
(1)若E是BC的中點,求證:DE=CF;
(2)若∠CDE=30°,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,點D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】坐標(biāo)平面內(nèi)有4個點A(0,2),B(-2,0),C(1,-1),D(3,1).
(1)建立坐標(biāo)系,描出這4個點;
(2)順次連接A,B,C,D,組成四邊形ABCD,求四邊形ABCD的面積.
(3)線段AB,CD有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC的中點,AC的垂直平分線交AC,AD,AB于點E,O,F(xiàn),則圖中全等三角形的對數(shù)是( )
A. 3對 B. 4對 C. 5對 D. 6對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com