【題目】如圖,在四邊形ABCD中,∠A=∠BCD90°,CEAD于點E

1)求證:AECE;

2)若tanD3,求AB的長.

【答案】1)見解析;(2AB4

【解析】

(1)過點BBFCEF,根據(jù)同角的余角相等求出∠BCF=D,再利用角角邊證明BCFCDE全等,根據(jù)全等三角形對應(yīng)邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據(jù)矩形的對邊相等可得AE=BF,從而得證;

(2)(1)可知:CF=DE,四邊形AEFB是矩形,從而求得AB=EF,利用銳角三角函數(shù)的定義得出DECE的長,即可求得AB的長.

1)證明:

過點BBHCEH,如圖1

CEAD,

∴∠BHC=∠CED90°,∠1+∠D90°

∵∠BCD90°,

∴∠1+∠290°,

∴∠2=∠D

BCCD

∴△BHC≌△CEDAAS

BHCE

BHCE,CEAD,∠A90°,

∴四邊形ABHE是矩形,

AEBH

AECE

2)∵四邊形ABHE是矩形,

ABHE

∵在RtCED中,

設(shè)DEx,CE3x

x2

DE2,CE6

CHDE2

ABHE624

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD,點EAB的中點,AFBC于點F,聯(lián)結(jié)EFED、DFDEAF于點G,且AE2EGED

(1)求證:DEEF

(2)求證:BC22DFBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F是正方形ABCD對角線AC上的兩點,且,連接BE、DEBF、DF

求證:四邊形BEDF是菱形:

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年中國北京世界園藝博覽會已于2019429日在北京市延慶區(qū)開展,吸引了大批游客參觀游覽.五一小長假期間平均每天入園人數(shù)大約是8萬人,佳佳等5名同學(xué)組成的學(xué)習(xí)小組,隨機(jī)調(diào)查了五一假期中入園參觀的部分游客,獲得了他們在園內(nèi)參觀所用時間,并對數(shù)據(jù)進(jìn)行整理,描述和分析,下面給出了部分信息:

a.參觀時間的頻數(shù)分布表如下:

時間(時)

頻數(shù)(人數(shù))

頻率

25

0.050

85

160

0.320

139

0.278

0.100

41

0.082

合計

1.000

b.參觀時間的頻數(shù)分布直方圖如圖:

根據(jù)以上圖表提供的信息,解答下列問題:

1)這里采用的調(diào)查方式是   ;

2)表中   ,   ,   ;

3)并請補(bǔ)全頻數(shù)分布直方圖;

4)請你估算五一假期中平均每天參觀時間小于4小時的游客約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】罰球是籃球比賽中得分的一個組成部分,罰球命中率的高低對籃球比賽的結(jié)果影響很大.如圖是對某球員罰球訓(xùn)練時命中情況的統(tǒng)計:

下面三個推斷:①當(dāng)罰球次數(shù)是500時,該球員命中次數(shù)是411,所以罰球命中的概率是0.822;②隨著罰球次數(shù)的增加,罰球命中的頻率總在0.812附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員罰球命中的概率是0.812;③由于該球員罰球命中的頻率的平均值是0.809,所以罰球命中的概率是0.809.其中合理的是(

A.B.C.①③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將拋物線m≠0)向右平移個單位長度后得到拋物線G2,點A是拋物線G2的頂點.

1)直接寫出點A的坐標(biāo);

2)過點(0,)且平行于x軸的直線l與拋物線G2交于BC兩點.

①當(dāng)∠BAC90°時.求拋物線G2的表達(dá)式;

②若60°<∠BAC120°,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).下面是小文的探究過程,請補(bǔ)充完整:

1)函數(shù)的自變量的取值范圍是__________

2)下表是的幾組對應(yīng)值:

如圖,在平面直角坐標(biāo)系中,描出了以上表中各對應(yīng)值為坐標(biāo)的點.

①觀察圖中各點的位置發(fā)現(xiàn):點,,均關(guān)于某點中心對稱,則該點的坐標(biāo)為__________;

②小文分析函數(shù)表達(dá)式發(fā)現(xiàn):當(dāng)時,該函數(shù)的最大值為0,則該函數(shù)圖象在直線左側(cè)的最高點的坐標(biāo)為__________;

3)小文補(bǔ)充了該函數(shù)圖象上兩個點.

①在上圖中描出這兩個點,并畫出該函數(shù)的圖象;

②寫出該函數(shù)的一條性質(zhì):__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CDE,使DECD,連接AE

1)求證:四邊形ABDE是平行四邊形;

2)連接OE,若∠ABC60°,且ADDE4,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了從甲、乙兩名學(xué)生中選擇一人參加電腦知識競賽,在相同條件下對他們的電腦知識進(jìn)行了10次測驗,成績?nèi)缦拢?單位:分)

甲成績

76

84

90

84

81

87

88

81

85

84

乙成績

82

86

87

90

79

81

93

90

74

78

(1)請完成下表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

85分以上的頻率

84

84

14.4

0.3

84

84

34

(2)利用以上信息,請從三個不同的角度對甲、乙兩名同學(xué)的成績進(jìn)行分析.

查看答案和解析>>

同步練習(xí)冊答案