如圖,AB是⊙O的直徑,C是AB延長線上一點(diǎn),點(diǎn)D在⊙O上,且∠A=30°,∠ABD=2∠BDC .
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)O作OF∥AD,分別交BD、CD于點(diǎn)E、F.若OB =2,求 OE和CF的長.
(1)連結(jié)OD,根據(jù)圓周角定理可得∠ADB=90°,即可求得∠ABD=60°,從而可以求得∠BDC=,即可證得△ODB是等邊三角形,則可得∠ODC=90°,問題得證;(2),
解析試題分析:(1)連結(jié)OD,根據(jù)圓周角定理可得∠ADB=90°,即可求得∠ABD=60°,從而可以求得∠BDC=,即可證得△ODB是等邊三角形,則可得∠ODC=90°,問題得證;
(2)根據(jù)平行線的性質(zhì)可得∠OED=90°,根據(jù)垂徑定理可得,根據(jù)勾股定理可求得OE的長,然后根據(jù)∠DOC、∠DOF的正切函數(shù)即可求得CD、DF的長,從而可以求得結(jié)果.
(1)連結(jié)OD
∵AB是⊙O的直徑,
∴∠ADB=90°.
∵∠A=30°,
∴∠ABD=60°.
∵∠ABD=2∠BDC,
∴∠BDC=.
∵OD=OB,
∴△ODB是等邊三角形.
∴∠ODB=60°.
∴∠ODC=∠ODB+∠BDC=90°.
∴CD是⊙O的切線;
(2)∵OF∥AD,∠ADB=90°,
∴∠OED=90°
∵BD=OB=2,
∴.
∴.
∵OD=OB=2,∠DOC=60°,∠DOF=30°,
∴,.
∴.
考點(diǎn):圓周角定理,等邊三角形的判定和性質(zhì),切線的判定,平行線的性質(zhì),垂徑定理,勾股定理,銳角三角函數(shù)的定義
點(diǎn)評(píng):此類問題知識(shí)點(diǎn)較多,綜合性較強(qiáng),在中考中比較常見,一般難度不大,需熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com