【題目】在平面幾何的學(xué)習(xí)過程中,我們經(jīng)常會研究角和線之間的關(guān)系.
(1)如圖①,直線a、b被直線c所截,交點分別為A、B.當(dāng)∠1、∠2滿足數(shù)量關(guān)系 時,a∥b;
(2)如圖②,在(1)中,作射線BC,與直線a的交點為C,當(dāng)∠3、∠4滿足何種數(shù)量關(guān)系時,AB=AC?證明你的結(jié)論;
(3)如圖③,在(2)中,若∠BAC=90°,AB=2,⊙I為△ABC的內(nèi)切圓.
①求⊙I的半徑;
②P為直線a上一點,若⊙I上存在兩個點M、N,使∠MPN=60°,直接寫出AP長度的取值范圍.
【答案】(1)∠1+∠2=180°;(2)當(dāng)∠3=∠4時,AB=AC;
(3)①;
②當(dāng)點P在射線AC上時,0≤AP≤,
當(dāng)點P在射線AC的反向延長線上時,0≤AP≤
【解析】
試題分析:(1)根據(jù)平行線的性質(zhì)和鄰補(bǔ)角的定義即可得到結(jié)論;
(2)根據(jù)平行線的性質(zhì)得到∠ACB=∠4,等量代換得到∠ACB=∠3,由等腰三角形的判定即可得到結(jié)論;
(3)①由(2)得AB=AC,推出△ABC是等腰直角三角形.根據(jù)勾股定理得到,由⊙I為△ABC的內(nèi)切圓,得到四邊形ADIF是正方形.根據(jù)切線長定理得到r=AD=,于是得到結(jié)論;
②當(dāng)點P在射線AC上時,得到0≤AP≤,當(dāng)點P在射線AC的反向延長線上時,得到0≤AP≤.
試題解析:(1)∠1+∠2=180°,
故答案為:∠1+∠2=180°;
(2)當(dāng)∠3=∠4時,AB=AC,
證明:∵a∥b,
∴∠ACB=∠4,
又∵∠3=∠4,
∴∠ACB=∠3,
∴AB=AC;
(3)①由(2)得AB=AC,
又∵∠BAC=90°,
∴△ABC是等腰直角三角形.
∵AB=2,
∴AC=2.
∴在Rt△ABC中,.
設(shè)D、E、F分別為邊AB、BC、AC上的切點,
連接ID、IE、IF,
∵⊙I為△ABC的內(nèi)切圓,
∴ID⊥AB、IE⊥BC、IF⊥AC.
∴AD=AF,BD=BE,CE=CF.
∵∠BAC=90°,
∴四邊形ADIF是矩形.
∵ID=IF,
∴矩形ADIF是正方形.
∴r=AD=.
∴⊙I的半徑為;
②當(dāng)點P在射線AC上時,0≤AP≤,
當(dāng)點P在射線AC的反向延長線上時,0≤AP≤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)如圖,在平行四邊形ABCD中,點A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線y=(k≠0,x>0)過點D.
(1)求此雙曲線的解析式;
(2)作直線AC交y軸于點E,連結(jié)DE,求△ CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(___ ___)
∴∠2=∠CGD(等量代換)
∴CE∥BF(__ ___)
∴∠____ ____=∠BFD(___ ____)
又∵∠B=∠C(已知)
∴____ ____(等量代換)
∴AB∥CD(___ ____)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三個底面為正方形,且高度相等的長方體容器甲、乙、丙,底面邊長分別為5,12,13.今將甲、乙兩個容器裝滿的水倒入丙容器中,則水是否會溢出?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若點P(4,3)在⊙O內(nèi),則⊙O的半徑r的取值范圍是( )
A. 0<r<4B. 3<r<4C. 4<r<5D. r>5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A(-2,1)關(guān)于原點對稱的點的坐標(biāo)是()
A. (2,-1) B. (-2,-1) C. (2,1) D. (1,-2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com