(1)AD是的角平分線,則 = = ;
(2)AE是的中線,則 = = ;
(3)AF是的高,則 = =。
科目:初中數(shù)學 來源:初中數(shù)學 三點一測叢書 八年級數(shù)學 下 (江蘇版課標本) 江蘇版 題型:013
反比例函數(shù)y=(k≠0)任取一點M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因為b=,故ab=k,所以S=|k|(如圖(1)).
這就是說,過雙曲線上任意一點作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現(xiàn)舉例如下:
例1:如(2)圖,已知點P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大。
解答:=|k|
=|k|
故=
例2:如圖(3),在y=(x>0)的圖像上有三點A、B、C,經(jīng)過三點分別向x軸引垂線,交x軸于A1、B1、C1三點,連結OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有( )
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵=|k|=,
=|k|=
=|k|=
S1=S2=S3,故選A.
例3:一個反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點,AM⊥x軸,垂足為M,O是原點,如果△AOM的面積是3,那么這個反比例函數(shù)的解析式是________.
解答:∵S△AOM=|k|
又S△AOM=3,
∴|k|=3,|k|=6
∴k=±6
又∵曲線在第三象限
∴k>0∴k=6
∴所以反比例函數(shù)的解析式為y=.
根據(jù)是述意義,請你解答下題:
如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點A、B分別作軸和垂線,垂足分別為C、D,連結OA、OB,設AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得
A.S1>S2
B.S1=S2
C.S1<S2
D.大小關系不能確定
查看答案和解析>>
科目:初中數(shù)學 來源:初中數(shù)學 三點一測叢書 八年級數(shù)學 下。ńK版課標本) 江蘇版 題型:044
閱讀下面的短文,并解答下列問題.
相似形開闊了人類的視野數(shù)學知識最初都產(chǎn)生于實踐的需要,古人在測量土地面積和建筑物的高度時,就用到了相似形的知識.比如,幾何學之父,古希臘人歐幾里得曾經(jīng)這樣間接地測量金字塔的高度:他等到自己在陽光下的身影長與他的身高正好相等的時刻,測量了金字塔的塔影的長度.“這個,各位先生!”他宣布,“恰恰就是大金字塔的高度.”
如圖(1),設A為塔高,B為身高,由B∥A知,當身影長與身高相等時,P=B,所以A=P,即塔高等于塔影的長度.
光學望遠鏡、照相機的成像原理都用到相似形的知識,以簡單的針孔成像為例,在方盒一側壁開有極細的針孔,蠟燭發(fā)出的光線穿過針孔在方盒另一側壁上形成一個倒立的像.蠟燭距方盒越遠,所成像越小,像長和蠟燭長之間的比可以表示為.如圖(2)
人眼觀察遠處的物體顯得較小,其中的道理類似于以上針孔成像原理,只是人的眼球相當于照相機的光學鏡頭,成像原理稍復雜.
無數(shù)事實說明,相似形的知識使人類大大拓寬了視野,擴展了人類觀察和認識事物的能力.
請你再舉例說明相似形在實際生活、科學領域等方面的應用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
圖序 | 頂點個數(shù)(a) | 邊數(shù)(b) | 區(qū)域(c) |
(1) | |||
(2) | 16 | 24 | 9 |
(3) | |||
(4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com