【題目】 如圖,從地面上的點(diǎn)A看一山坡上的電線桿PQ,測(cè)得桿頂端點(diǎn)P的仰角是45°,向前走9m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°.
(1)求∠BPQ的度數(shù);
(2)求該電線桿PQ的高度.(結(jié)果保留根號(hào))
【答案】(1)30°;(2)(9+3)米.
【解析】
試題(1)延長(zhǎng)PQ交直線AB于點(diǎn)E,根據(jù)直角三角形兩銳角互余求得即可;
(2)設(shè)PE=x米,在直角△APE和直角△BPE中,根據(jù)三角函數(shù)利用x表示出AE和BE,根據(jù)AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函數(shù)求得QE的長(zhǎng),則PQ的長(zhǎng)度即可求解.
解:延長(zhǎng)PQ交直線AB于點(diǎn)E,如圖所示:
(1)∠BPQ=90°﹣60°=30°;
(2)設(shè)PE=x米.
在直角△APE中,∠A=45°,
則AE=PE=x米;
∵∠PBE=60°,
∴∠BPE=30°,
在直角△BPE中,BE=PE=x米,
∵AB=AE﹣BE=9米,
則x﹣x=9,
解得:x=.
則BE=米.
在直角△BEQ中,QE=BE=米.
∴PQ=PE﹣QE=﹣=9+3(米).
答:電線桿PQ的高度為(9+3)米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P、點(diǎn)Q同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(),已知y與t之間的函數(shù)圖象如圖2所示.
給出下列結(jié)論:①當(dāng)0<t≤10時(shí),△BPQ是等腰三角形;②=48;③當(dāng)14<t<22時(shí),y=110-5t;④在運(yùn)動(dòng)過(guò)程中,使得△ABP是等腰三角形的P點(diǎn)一共有3個(gè);⑤△BPQ與△ABE相似時(shí),t=14.5.
其中正確結(jié)論的序號(hào)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圈O的直徑,率徑OC⊥AB,OB=4,D是OB的中點(diǎn),點(diǎn)E是BC上一動(dòng)點(diǎn),連結(jié)AE,DE.
(1)當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),求△ADE的面積
(2)若tan∠AED=,求AE的長(zhǎng),
(3)點(diǎn)F是半徑OC上一動(dòng)點(diǎn),設(shè)點(diǎn)E到直線OC的距離為m.
①當(dāng)△DEF是等腰直角三角形時(shí),求m的值.
②延長(zhǎng)DF交半圓弧于點(diǎn)G,若AG=EG,AG∥DE,直接寫(xiě)出DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=4,AD=10,E是AD的一點(diǎn),且AE=2,M是AB上一點(diǎn),射線ME交CD的延長(zhǎng)線于點(diǎn)F,EG⊥ME交BC于點(diǎn)G,連接MG,FG,FG交AD于點(diǎn)N.
(1)當(dāng)點(diǎn)M為AB中點(diǎn)時(shí),則DF= ,FG= .(直接寫(xiě)出答案)
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,的值是否會(huì)變化,若不變,求出它的值;若變化,請(qǐng)說(shuō)明理由.
(3)若△EGN為等腰三角形時(shí),請(qǐng)求出所有滿足條件的AM的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,于點(diǎn)D,點(diǎn)E是直線AC上一動(dòng)點(diǎn),連接DE,過(guò)點(diǎn)D作,交直線BC于點(diǎn)F.
探究發(fā)現(xiàn):
如圖1,若,點(diǎn)E在線段AC上,則______;
數(shù)學(xué)思考:
如圖2,若點(diǎn)E在線段AC上,則______用含m,n的代數(shù)式表示;
當(dāng)點(diǎn)E在直線AC上運(yùn)動(dòng)時(shí),中的結(jié)論是否任然成立?請(qǐng)僅就圖3的情形給出證明;
拓展應(yīng)用:若,,,請(qǐng)直接寫(xiě)出CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD為⊙O的直徑,AC為⊙O的弦,AB=AC,AD交BC于點(diǎn)E,AE=2,ED=4,延長(zhǎng)DB到點(diǎn)F,使得BF=BO,連接FA.則下列結(jié)論中不正確的是( )
A. △ABE∽△ADBB. ∠ABC=∠ADB
C. AB=3D. 直線FA與⊙O相切
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點(diǎn)C(3,2),連接OC.以OC為對(duì)稱(chēng)軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過(guò)點(diǎn)A′、B,則k的值是( 。
A. 9B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中. 已知拋物線的對(duì)稱(chēng)軸是直線x=1.
(1)用含a的式子表示b,并求拋物線的頂點(diǎn)坐標(biāo);
(2)已知點(diǎn),,若拋物線與線段AB沒(méi)有公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍;
(3)若拋物線與x軸的一個(gè)交點(diǎn)為C(3,0),且當(dāng)時(shí),y的取值范圍是,結(jié)合函數(shù)圖象,直接寫(xiě)出滿足條件的m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)九年級(jí)男生共250人,現(xiàn)隨機(jī)抽取了部分九年級(jí)男生進(jìn)行引體向上測(cè)試,相關(guān)數(shù)據(jù)的統(tǒng)計(jì)圖如下.設(shè)學(xué)生引體向上測(cè)試成績(jī)?yōu)?/span>x(單位:個(gè)).學(xué)校規(guī)定:當(dāng)0≤x<2時(shí)成績(jī)等級(jí)為不及格,當(dāng)2≤x<4時(shí)成績(jī)等級(jí)為及格,當(dāng)4≤x<6時(shí)成績(jī)等級(jí)為良好,當(dāng)x≥6時(shí)成績(jī)等級(jí)為優(yōu)秀.樣本中引體向上成績(jī)優(yōu)秀的人數(shù)占30%,成績(jī)?yōu)?/span>1個(gè)和2個(gè)的人數(shù)相同.
(1)補(bǔ)全統(tǒng)計(jì)圖;
(2)估計(jì)全校九年級(jí)男生引體向上測(cè)試不及格的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com