【題目】問(wèn)題背景:在正方形ABCD的外側(cè),作△ADE和△DCF,連結(jié)AF、BE.特例探究:如圖,若△ADE和△DCF均為等邊三角形,試判斷線段AF與BE的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由.
【答案】AF=BE且AF⊥BE;證明見(jiàn)解析.
【解析】
易證△ADE≌△DCF,即可證明AF與BE的數(shù)量關(guān)系是:AF=BE,位置關(guān)系式:AF⊥BE;
AF=BE,AF⊥BE.
∵四邊形ABCD為正方形,△ADE與△DCF均為等邊三角形,
∴AB=AD=CD,∠BAD=∠ADC,AE=AD=CD=DF,∠DAE=∠CDF,
∴∠BAD+∠DAE=∠ADC+∠CDF,即∠BAE=∠ADF,
在△ABE與△DAF中,
∴△ABE≌△DAF(SAS),
∴AF=BE,∠ABE=∠DAF,
∵∠DAF+∠BAF=90°,
∴∠ABE+∠BAF=90°,
∴AF⊥BE;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說(shuō)明理由. |
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請(qǐng)你直接寫(xiě)出結(jié)論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F.
(請(qǐng)你完成以下解答過(guò)程)
(3)拓展結(jié)論,設(shè)計(jì)新題
在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動(dòng)點(diǎn)E、F分別從點(diǎn)B、D同時(shí)出發(fā),以1cm/s的速度向點(diǎn)A、C運(yùn)動(dòng),連接AF、CE,取AF、CE的中點(diǎn)G、H,連接GE、FH.設(shè)運(yùn)動(dòng)的時(shí)間為ts(0<t<4).
(1)求證:AF∥CE;
(2)當(dāng)t為何值時(shí),四邊形EHFG為菱形;
(3)試探究:是否存在某個(gè)時(shí)刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE∥AB,分別交BC、AC于點(diǎn)D、E,點(diǎn)F在BC的延長(zhǎng)線上,且CF=DE.
(1)求證:△CEF是等腰三角形;
(2)連接AD,當(dāng)AD⊥BC,BC=8,△CEF的周長(zhǎng)為16時(shí),求△DEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的面積是64,點(diǎn)F在邊AD上,點(diǎn)E在邊AB的延長(zhǎng)線上.若CE⊥CF,且△CEF的面積是50,則DF的長(zhǎng)度是____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰直角△ABC中,∠BAC=90°,AB=AC,∠ADB=45°
(1)求證:BD⊥CD;
(2)若BD=6,CD=2,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,DE∥BC,EF∥AB,若S△ADE=16cm2,S△EFC=49cm2, 求①,②S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問(wèn)這次表演是否成功?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,BC=12厘米,點(diǎn)D為AB上一點(diǎn)且BD=8厘米,點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
(1)用含t的式子表示PC的長(zhǎng)為_______________;
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)p的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),三角形BPD與三角形CQP是否全等,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,請(qǐng)求出點(diǎn)Q的運(yùn)動(dòng)速度是多少時(shí),能夠使三角形BPD與三角形CQP全等?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com