【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點(diǎn)E,過(guò)點(diǎn)EEFBC,垂足為F,延長(zhǎng)CDGB的延長(zhǎng)線于點(diǎn)P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2);(3)OE=2﹣4.

【解析】

1)要證PG與⊙O相切只需證明∠OBG=90°,由∠A與∠BDC是同弧所對(duì)圓周角且∠BDC=DBO可得∠CBG=DBO,結(jié)合∠DBO+OBC=90°即可得證;

(2)求需將BEOCOC相等線段放入兩三角形中,通過(guò)相似求解可得,作OMAC、連接OA,證BEF∽△OAM,由AM=AC、OA=OC,結(jié)合即可得;

(3)RtDBC中求得BC=8、DCB=30°,在RtEFC中設(shè)EF=x,知EC=2x、FC=x、BF=8x,繼而在RtBEF中利用勾股定理求出x的,從而得出答案.

1)如圖,連接OB,則OB=OD,

∴∠BDC=DBO,

∵∠BAC=BDC、BDC=GBC,

∴∠GBC=BDC,

CD是⊙O的切線,

∴∠DBO+OBC=90°,

∴∠GBC+OBC=90°,

∴∠GBO=90°,

PG與⊙O相切;

(2)過(guò)點(diǎn)OOMAC于點(diǎn)M,連接OA,

則∠AOM=COM=AOC,

∴∠ABC=AOC,

又∵∠EFB=OGA=90°,

∴△BEF∽△OAM,

,

AM=AC,OA=OC,

,

又∵

;

(3)PD=OD,PBO=90°,

BD=OD=8,

RtDBC中,BC==8,

又∵OD=OB,

∴△DOB是等邊三角形,

∴∠DOB=60°,

∵∠DOB=OBC+OCB,OB=OC,

∴∠OCB=30°,

,=,

∴可設(shè)EF=x,則EC=2x、FC=x,

BF=8x,

RtBEF中,BE2=EF2+BF2,

100=x2+(8x)2,

解得:x=6±

6+>8,舍去,

x=6﹣,

EC=12﹣2

OE=8﹣(12﹣2)=2﹣4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將連續(xù)的奇數(shù)13,5,7,9……排成如下的數(shù)表:

1)十字框中的5個(gè)數(shù)的和與中間的數(shù)23有什么關(guān)系?若將十字框上下左右平移,可框住另外5個(gè)數(shù),這5個(gè)數(shù)還有這種規(guī)律嗎?

2)設(shè)十字框中中間的數(shù)為,用含的式子表示十字框中的其他四個(gè)數(shù);

3)十字框中的5個(gè)數(shù)的和能等于2019嗎?若能,請(qǐng)寫出這5個(gè)數(shù);若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有、、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在(

A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處

B.AC、BC兩邊垂直平分線的交點(diǎn)處

C.AC、BC兩邊高線的交點(diǎn)處

D.ACBC兩邊中線的交點(diǎn)處

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個(gè)單位后得到A1B1C1,請(qǐng)畫(huà)出A1B1C1

(2)將ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A2B2C2,請(qǐng)畫(huà)出A2B2C2;

(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無(wú)須說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,Am°,ABC和∠ACD的平分線相交于點(diǎn)A1,得∠A1;A1BC和∠A1CD的平分線相交于點(diǎn)A2,得∠A2;…;A2018BC和∠A2018CD的平分線交于點(diǎn)A2019則∠A2019________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形有一邊上的中線恰好等于這邊的長(zhǎng),那么我們稱這個(gè)三角形為美麗三角形

(1)如圖△ABC中,AB=AC=BC=2,求證:△ABC美麗三角形

(2)RtABC中,∠C=90°AC=2,若△ABC美麗三角形,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市將開(kāi)展以走進(jìn)中國(guó)數(shù)學(xué)史為主題的知識(shí)凳賽活動(dòng),紅樹(shù)林學(xué)校對(duì)本校100名參加選拔賽的同學(xué)的成績(jī)按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:

成績(jī)等級(jí)

頻數(shù)(人數(shù))

頻率

A

4

0.04

B

m

0.51

C

n

D

合計(jì)

100

1

(1)求m=   ,n=   ;

(2)在扇形統(tǒng)計(jì)圖中,求“C等級(jí)所對(duì)應(yīng)心角的度數(shù);

(3)成績(jī)等級(jí)為A4名同學(xué)中有1名男生和3名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全市比賽,請(qǐng)用樹(shù)狀圖法或者列表法求出恰好選中“11的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開(kāi)往乙地轎車的平均速度大于貨車的平均速度,如圖,線段OA、折線BCD分別表示兩車離甲地的距離單位:千米與時(shí)間單位:小時(shí)之間的函數(shù)關(guān)系.

線段OA與折線BCD中,______表示貨車離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系.

求線段CD的函數(shù)關(guān)系式;

貨車出發(fā)多長(zhǎng)時(shí)間兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中,點(diǎn)O為對(duì)角線BD的中點(diǎn),DE、BF分別平分∠ADC和∠ABC.

(1)求證:EFBD互相平分;

(2)若∠A=60,AE=2EB,AD=4,求四邊形DEBF的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案