【題目】從化市某中學(xué)初三(1)班數(shù)學(xué)興趣小組為了解全校800名初三學(xué)生的“初中畢業(yè)選擇升學(xué)和就業(yè)”情況,特對本班50名同學(xué)們進(jìn)行調(diào)查,根據(jù)全班同學(xué)提出的3個主要觀點(diǎn):A高中,B中技,C就業(yè),進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項(xiàng)觀點(diǎn));并制成了扇形統(tǒng)計圖(如圖).請回答以下問題:
(1)該班學(xué)生選擇 觀點(diǎn)的人數(shù)最多,共有 人,在扇形統(tǒng)計圖中,該觀點(diǎn)所在扇形區(qū)域的圓心角是 度.
(2)利用樣本估計該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù).
(3)已知該班只有2位女同學(xué)選擇“就業(yè)”觀點(diǎn),如果班主任從該觀點(diǎn)中,隨機(jī)選取2位同學(xué)進(jìn)行調(diào)查,那么恰好選到這2位女同學(xué)的概率是多少?(用樹形圖或列表法分析解答).
【答案】(1)A高中觀點(diǎn).30. 216;(2)256人;(3).
【解析】
試題(1)全班人數(shù)乘以選擇“A高中”觀點(diǎn)的百分比即可得到選擇“A高中”觀點(diǎn)的人數(shù),用360°乘以選擇“A高中”觀點(diǎn)的百分比即可得到選擇“A高中”的觀點(diǎn)所在扇形區(qū)域的圓心角的度數(shù);
(2)用全校初三年級學(xué)生數(shù)乘以選擇“B中技”觀點(diǎn)的百分比即可估計該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù);
(3)先計算出該班選擇“就業(yè)”觀點(diǎn)的人數(shù)為4人,則可判斷有2位女同學(xué)和2位男生選擇“就業(yè)”觀點(diǎn),再列表展示12種等可能的結(jié)果數(shù),找出出現(xiàn)2女的結(jié)果數(shù),然后根據(jù)概率公式求解.
試題解析:(1)該班學(xué)生選擇A高中觀點(diǎn)的人數(shù)最多,共有60%×50=30(人),在扇形統(tǒng)計圖中,該觀點(diǎn)所在扇形區(qū)域的圓心角是60%×360°=216°;
(2)∵800×32%=256(人),
∴估計該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù)約是256人;
(3)該班選擇“就業(yè)”觀點(diǎn)的人數(shù)=50×(1-60%-32%)=50×8%=4(人),則該班有2位女同學(xué)和2位男生選擇“就業(yè)”觀點(diǎn),
列表如下:
共有12種等可能的結(jié)果數(shù),其中出現(xiàn)2女的情況共有2種.
所以恰好選到2位女同學(xué)的概率=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上,老師為了解女學(xué)生定點(diǎn)投籃的情況,隨機(jī)抽取8名女生進(jìn)行每人4次定點(diǎn)投籃的測試,進(jìn)球數(shù)的統(tǒng)計如圖所示.
(1)求女生進(jìn)球數(shù)的平均數(shù)、中位數(shù);
(2)投球4次,進(jìn)球3個以上(含3個)為優(yōu)秀,全校有女生1200人,估計為“優(yōu)秀”等級的女生約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對稱軸,并在所給坐標(biāo)系中畫出該函數(shù)的圖象;
(3)該函數(shù)的圖象經(jīng)過怎樣的平移得到y=x2的圖象?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點(diǎn)P從B出發(fā)沿BA向A運(yùn)動,速度為每秒1cm,點(diǎn)E是點(diǎn)B以P為對稱中心的對稱點(diǎn),點(diǎn)P運(yùn)動的同時,點(diǎn)Q從A出發(fā)沿AC向C運(yùn)動,速度為每秒2cm,當(dāng)點(diǎn)Q到達(dá)頂點(diǎn)C時,P,Q同時停止運(yùn)動,設(shè)P,Q兩點(diǎn)運(yùn)動時間為t秒.
(1)當(dāng)t為何值時,PQ∥BC?
(2)設(shè)四邊形PQCB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;
(3)四邊形PQCB面積能否是△ABC面積的?若能,求出此時t的值;若不能,請說明理由;
(4)當(dāng)t為何值時,△AEQ為等腰三角形?(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了“創(chuàng)建文明城市,建設(shè)美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進(jìn)行綠化,一部分種草,剩余部分栽花,設(shè)種草部分的面積為(m2),種草所需費(fèi)用1(元)與(m2)的函數(shù)關(guān)系式為,其圖象如圖所示:栽花所需費(fèi)用2(元)與x(m2)的函數(shù)關(guān)系式為2=﹣0.012﹣20+30000(0≤≤1000).
(1)請直接寫出k1、k2和b的值;
(2)設(shè)這塊1000m2空地的綠化總費(fèi)用為W(元),請利用W與的函數(shù)關(guān)系式,求出綠化總費(fèi)用W的最大值;
(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請求出綠化總費(fèi)用W的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件50元.當(dāng)售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,以點(diǎn)4為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的長為半徑畫弧,兩弧交于點(diǎn)P;連接AP并廷長交BC于點(diǎn)E,連接EF
(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;
(2)若AB=2,AE=2,求∠BAD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實(shí)數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D為矩形的四個頂點(diǎn),AB=16cm,AD=6cm,動點(diǎn)P、Q分別從點(diǎn)A、C同時出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動,一直到達(dá)B為止,點(diǎn)Q以2 cm/s的速度向D移動.
(1)P、Q兩點(diǎn)從出發(fā)開始到幾秒?四邊形PBCQ的面積為33cm2;
(2)P、Q兩點(diǎn)從出發(fā)開始到幾秒時?點(diǎn)P和點(diǎn)Q的距離是10cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com