【題目】如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點(diǎn)P從B出發(fā)沿BA向A運(yùn)動(dòng),速度為每秒1cm,點(diǎn)E是點(diǎn)B以P為對(duì)稱中心的對(duì)稱點(diǎn),點(diǎn)P運(yùn)動(dòng)的同時(shí),點(diǎn)Q從A出發(fā)沿AC向C運(yùn)動(dòng),速度為每秒2cm,當(dāng)點(diǎn)Q到達(dá)頂點(diǎn)C時(shí),P,Q同時(shí)停止運(yùn)動(dòng),設(shè)P,Q兩點(diǎn)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),PQ∥BC?
(2)設(shè)四邊形PQCB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;
(3)四邊形PQCB面積能否是△ABC面積的?若能,求出此時(shí)t的值;若不能,請(qǐng)說明理由;
(4)當(dāng)t為何值時(shí),△AEQ為等腰三角形?(直接寫出結(jié)果)
【答案】(1)t=;(2)y=t2﹣8t+24;(3)四邊形PQCB面積能是△ABC面積的,此時(shí)t的值為5﹣;(4)當(dāng)t為秒秒秒時(shí),△AEQ為等腰三角形.
【解析】
試題(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10-t,然后由PQ∥BC,根據(jù)平行線分線段成比例定理得出,列出比例式,求解即可;
(2)根據(jù)S四邊形PQCB=S△ACB-S△APQ=ACBC-APAQsinA,即可得出y關(guān)于t的函數(shù)關(guān)系式;
(3)根據(jù)四邊形PQCB面積是△ABC面積的,列出方程t2-8t+24=×24,解方程即可;
(4)△AEQ為等腰三角形時(shí),分三種情況討論:①AE=AQ;②EA=EQ;③QA=QE,每一種情況都可以列出關(guān)于t的方程,解方程即可.
試題解析:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,
∴AB=10cm.
∵BP=t,AQ=2t,
∴AP=AB-BP=10-t.
∵PQ∥BC,
∴,
∴,
解得t=;
(2)∵S四邊形PQCB=S△ACB-S△APQ=ACBC-APAQsinA
∴y=×6×8-×(10-2t)2t=24-t(10-2t)=t2-8t+24,
即y關(guān)于t的函數(shù)關(guān)系式為y=t2-8t+24;
(3)四邊形PQCB面積能是△ABC面積的,理由如下:
由題意,得
t2-8t+24=×24,
整理,得t2-10t+12=0,
解得t1=5-,t2=5+(不合題意舍去).
故四邊形PQCB面積能是△ABC面積的,此時(shí)t的值為5-;
(4)△AEQ為等腰三角形時(shí),分三種情況討論:
①如果AE=AQ,那么10-2t=2t,解得t=;
②如果EA=EQ,那么(10-2t)×=t,解得t=;
③如果QA=QE,那么2t×=5-t,解得t=.
故當(dāng)t為秒、秒、秒時(shí),△AEQ為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點(diǎn)E在弧AD上,射線AE與CD的延長線交于點(diǎn)F.
(1)求圓O的半徑;
(2)如果AE=6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求當(dāng)10≤t≤30時(shí),R和t之間的關(guān)系式;
(2)求溫度在30℃時(shí)電阻R的值;并求出t≥30時(shí),R和t之間的關(guān)系式;
(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過6 kΩ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,△ABC內(nèi)接于⊙O,AB=AC,BD為⊙O的弦,且AB∥CD,過點(diǎn)A作⊙O的切線AE與DC的延長線交于點(diǎn)E,AD與BC交于點(diǎn)F.
(1)求證:四邊形ABCE是平行四邊形;
(2)若AE=6,CD=5,求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】明明利用自制“四旋翼”無人機(jī)進(jìn)行數(shù)學(xué)研究活動(dòng),無人機(jī)傳遞數(shù)據(jù)顯示,無人機(jī)A與地面CD的距離為420米,從無人機(jī)底部A處看“河南大玉米”(鄭州會(huì)展中心千禧大夏)頂部B的俯角為30°,看這棟大樓底部C的俯角為60°,求“河南大玉米”的高度.(,,≈2.236,結(jié)果精確到1m.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)求二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;
(3)若直線與y軸的交點(diǎn)為E,連結(jié)AD、AE,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從化市某中學(xué)初三(1)班數(shù)學(xué)興趣小組為了解全校800名初三學(xué)生的“初中畢業(yè)選擇升學(xué)和就業(yè)”情況,特對(duì)本班50名同學(xué)們進(jìn)行調(diào)查,根據(jù)全班同學(xué)提出的3個(gè)主要觀點(diǎn):A高中,B中技,C就業(yè),進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項(xiàng)觀點(diǎn));并制成了扇形統(tǒng)計(jì)圖(如圖).請(qǐng)回答以下問題:
(1)該班學(xué)生選擇 觀點(diǎn)的人數(shù)最多,共有 人,在扇形統(tǒng)計(jì)圖中,該觀點(diǎn)所在扇形區(qū)域的圓心角是 度.
(2)利用樣本估計(jì)該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù).
(3)已知該班只有2位女同學(xué)選擇“就業(yè)”觀點(diǎn),如果班主任從該觀點(diǎn)中,隨機(jī)選取2位同學(xué)進(jìn)行調(diào)查,那么恰好選到這2位女同學(xué)的概率是多少?(用樹形圖或列表法分析解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是 ;
(2)乙家庭沒有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com