已知兩圓的圓心距為5,兩圓半徑的長分別為方程x2-5x+6=0的兩根,則兩圓的相互位置關(guān)系是


  1. A.
    內(nèi)含
  2. B.
    內(nèi)切
  3. C.
    外切
  4. D.
    外離
C
分析:根據(jù)題意,兩圓半徑之和為5,等于圓心距,所以兩圓外切.
解答:∵兩圓半徑的長分別為方程x2-5x+6=0的兩根,
∴兩圓半徑之和為5,
又兩圓的圓心距為5,
∴兩圓外切.
故選C.
點評:此題考查兩圓位置關(guān)系的判定方法.根據(jù)數(shù)量關(guān)系與兩圓位置關(guān)系的對應情況便可直接得出答案.
外離,則P>R+r;外切,則P=R+r;相交,則R-r<P<R+r;內(nèi)切,則P=R-r;內(nèi)含,則P<R-r.
(P表示圓心距,R,r分別表示兩圓的半徑).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

4、已知兩圓的圓心距為4,兩圓的半徑分別是1和3,則這兩圓的位置關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、已知兩圓的圓心距為5,兩圓半徑的長分別為方程x2-5x+6=0的兩根,則兩圓的相互位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•普陀區(qū)模擬)已知兩圓的圓心距為4,其中一個圓的半徑長為5,那么當兩圓內(nèi)切時,另一圓的半徑為
9或1
9或1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•金山區(qū)二模)已知兩圓的圓心距為4,其中一個圓的半徑長為3,那么當兩圓內(nèi)切時,另一圓的半徑為
7
7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平南縣二模)已知兩圓的圓心距為3,兩圓的半徑分別是方程x2-4x+3=0的兩根,那么這兩個圓的位置關(guān)系是
相交
相交

查看答案和解析>>

同步練習冊答案