如圖,已知△ABC是等腰直角三角形,∠C=90°,點M、N分別是邊AC和BC的中點,點D在射線BM上,且BD=2BM.點E在射線NA上,且NE=2NA,求證:BD⊥DE.
考點:全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),等腰直角三角形
專題:證明題
分析:取AD中點F,連接EF,證△BCM≌△ACN,△EAF≌△ANC,△AFE≌△DFE,推出∠EDA=∠EAD,∠ADM=∠CBM=∠NAC,求出∠EDB=∠EDA+∠BDA=∠EAD+∠NAC=180°-∠DAM,即可得出答案.
解答:
證明:取AD中點F,連接EF,
∵△ABC是等腰直角三角形,點M、N分別是邊AC和BC的中點,
∴BC=AC,AC=2CM,BC=2CN,
∴CM=CN,
在△BCM和△ACN中,
BC=AC
∠C=∠C
CM=CN
,
∴△BCM≌△ACN(SAS),
∴AN=BM,∠CBM=∠CAN,
∵NE=2AN,
∴AE=AN,
∵AD∥BC,
∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,
在△EAF和△ANC中,
AE=AN
∠EAF=∠ANC
AF=NC
,
∴△EAF≌△ANC(SAS),
∴∠NAC=∠AEF,∠C=∠AFE=90°,
∴∠AFE=∠DFE=90°,
∵F為AD中點,
∴AF=DF,
在△AFE和△DFE中,
AF=DF
∠AFE=∠DFE
EF=EF

∴△AFE≌△DFE(SAS),
∴∠EAD=∠EDA=∠ANC,
∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,
∴BD⊥DE.
點評:本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS.全等三角形的對應(yīng)邊相等,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長為2cm,∠ADC=120°,弧BD是以A為圓心AB長為半徑的弧,弧CD是以點B為圓心BC長為半徑的。畡t圖中陰影部分的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

排水公司為了不讓水資源被生活廢水和生產(chǎn)廢水所污染,決定在匯川大道旁修建一個污水處理廠,5月比3月處理污水增加21%.設(shè)這兩個月凈化污水的量平均每月增長的百分率x,則x=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把一張矩形紙片ABCD沿EF折疊后,點C,D分別落在C′,D′的位置上,EC′交AD于點G.已知∠EFG=64°,那么∠FEG=( 。
A、64°B、54°
C、52°D、46°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算下列各題.
(1)3
12
-2
48
+
8
;  
(2)(
1
2
)-1-(2-π)0+丨-
2
丨-
1
2
-1
+
38

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=3ax2+2bx+c
(1)若a=b=1,c=-1,求該拋物線與x軸的交點坐標(biāo);
(2)若a+b+c=1,是否存在實數(shù)x0,使得相應(yīng)的y=1?若有,請指明有幾個并證明你的結(jié)論;若沒有,闡述理由;
(3)若a=
1
3
,c=2+b且拋物線在-1≤x≤2區(qū)間上的最小值是-3,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

方程
1
3
x(x+1)=0
的根是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:
(1)-18+(-7.5)-(-31)-12.5;
(2)-9÷
3
2
×
2
3
÷3;
(3)(
1
5
-
1
2
-
5
12
)÷(-
1
60
)
;               
(4)2×(-4)-3÷(-5)×
1
5

(5)99
16
17
×(-17);
(6)25×
3
4
-(-25)×
1
2
+25×(-
1
4
);
(7)(-2)3-2×(-3)+|2-5|-(-12010);   
(8)
1
1×3
+
1
3×5
+
1
5×7
+
+
1
49×51

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明從地面豎直上拋一個小球,小球上升的高度h與時間t成二次函數(shù)關(guān)系,已知當(dāng)t=2秒時和t=4秒時小球的高度是相等的,則下列時刻中小球的高度最高的是(  )
A、2秒B、2.5秒
C、3.7秒D、5秒

查看答案和解析>>

同步練習(xí)冊答案