【題目】小麗同學(xué)要畫∠AOB的平分線,卻沒有量角器和圓規(guī),于是她用三角尺按下面方法畫角平分線:
①在∠AOB的兩邊上,分別取OM=ON;
②分別過點(diǎn)M、N作OA、OB的垂線,交點(diǎn)為P;
③畫射線OP,則OP為∠AOB的平分線.
(1)請問:小麗的畫法正確嗎?試證明你的結(jié)論;
(2)如果你現(xiàn)在只有刻度尺,能否畫一個(gè)角的角平分線?請你在備用圖中試一試.(不需要寫作法,但是要讓讀者看懂,你可以在圖中標(biāo)明數(shù)據(jù))
【答案】(1)正確的,見解析;(2)見解析
【解析】
試題分析:(1)小麗的畫法正確,在Rt△OMP與Rt△ONP中,因?yàn)镺P=OP,OM=ON∴Rt△OMP≌Rt△ONP(HL),所以∠MOP=∠NOP,即OP平分∠AOB.
(2)分別在∠AOB的兩邊取M、N,使OM=ON,連接MN,并取MN的中點(diǎn)P,畫射線OP,則OP為∠AOB的平分線.(利用了等腰三角形三線合一定理)
解:(1)小麗的畫法是正確的,
證明如下:
因?yàn)镽t△OMP與Rt△ONP中,OM=ON,OP=OP,
所以Rt△OMP≌Rt△ONP,
所以∠MOP=∠NOP,即OP平分∠AOB;
(2)只有刻度尺能畫一個(gè)角的角平分線,畫法如圖:
①分別在∠AOB的兩邊取M、N,使OM=ON;
②連接MN,并取MN的中點(diǎn)P;
③畫射線OP,則OP為∠AOB的平分線.
作圖依據(jù):等腰三角形底邊上的中線平分頂角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的一個(gè)內(nèi)角為70°,則另兩個(gè)內(nèi)角的度數(shù)是( 。
A. 55°,55° B. 70°,40°
C. 55°,55°或70°,40° D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周六媽媽從新世紀(jì)購物回來,5斤蘑菇和1斤牛肉共40元,媽媽嘮叨:“上周也是買同樣多才花了35元,價(jià)格上漲太厲害了.”在看書的爸爸:“剛才聽老張說蘑菇單價(jià)上漲40%,牛肉單價(jià)上漲10%”,在學(xué)習(xí)的小強(qiáng)想應(yīng)該怎樣通過列方程(組)求解今天蘑菇、牛肉的單價(jià)呢?請聰明的你幫小強(qiáng)解決這個(gè)問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2003~2005年某市的財(cái)政收入情況如圖所示.根據(jù)圖中的信息,解答下列問題:
(1)該市2003~2005年財(cái)政收入的年平均增長率約為多少?(精確到1%)
(2)該市2006年財(cái)政收入能否達(dá)到700億元?請說明理由.
(備用數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=(k+2)x + k2-4中,當(dāng)k= ______ 時(shí),它是一個(gè)正比例函數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,請你作出猜想:當(dāng)∠AMN= 時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別為EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形:
(1)當(dāng)把△ADE繞點(diǎn)A旋轉(zhuǎn)到圖2的位置時(shí),CD=BE嗎?若相等請證明,若不等于請說明理由;
(2)當(dāng)把△ADE繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),△AMN還是等邊三角形嗎?若是請證明,若不是,請說明理由(可用第一問結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長之和為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),如果這三種情況是等可能的,當(dāng)三輛汽車經(jīng)過這個(gè)十字路口時(shí):
(1)求三輛車全部同向而行的概率;
(2)求至少有兩輛車向左轉(zhuǎn)的概率;
(3)由于十字路口右拐彎處是通往新建經(jīng)濟(jì)開發(fā)區(qū)的,因此交管部門在汽車行駛高峰時(shí)段對車流量作了統(tǒng)計(jì),發(fā)現(xiàn)汽車在此十字路口向右轉(zhuǎn)的頻率為,向左轉(zhuǎn)和直行的頻率均為.目前在此路口,汽車左轉(zhuǎn)、右轉(zhuǎn)、直行的綠燈亮的時(shí)間分別為30秒,在綠燈亮總時(shí)間不變的條件下,為了緩解交通擁擠,請你用統(tǒng)計(jì)的知識對此路口三個(gè)方向的綠燈亮的時(shí)間做出合理的調(diào)整.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com