順次連接等腰梯形各邊中點所圍成的四邊形是( 。
A、平行四邊形B、矩形C、菱形D、正方形
分析:由E、F、G、H分別為AB、BC、CD、DA的中點,得出EF,EH是中位線,再得出四條邊相等,根據(jù)“四條邊都相等的四邊形是菱形”進行證明.
解答:精英家教網解:∵E、F、G、H分別為AB、BC、CD、DA的中點,
∴EF∥AC且EF=
1
2
AC,EH∥BD且EH=
1
2
BD,
∵AC=BD,
∴EF=EH,
同理可得GF=HG=EF=EH,
∴四邊形EFGH為菱形,
故選:C.
點評:菱形的判別方法是說明一個四邊形為菱形的理論依據(jù),常用三種方法:
①定義;
②四邊相等;
③對角線互相垂直平分.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在實數(shù)0,
2
,-
1
3
,0、74,π中,無理數(shù)有
 
個;從2,-2,1,-1四個數(shù)中任取2個數(shù)求和,其和為0的概率是
 
;順次連接等腰梯形各邊中點所成的四邊形是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、下列說法:①一組對邊平行,另一組對邊相等的四邊形是平行四邊形或等腰梯形. ②一組對邊平行,一組對角相等的四邊形是平行四邊形.③兩組對角分別相等的四邊形是平行四邊形.④順次連接等腰梯形各邊中點所得到的四邊形是菱形.其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、下列命題中,是真命題的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列四個命題中,假命題的是( 。

查看答案和解析>>

同步練習冊答案