【題目】近一周,各個學校均在緊張有序的進行中考模擬考試,學生們通過模擬考試來調(diào)整自己的狀態(tài)并了解自己的學業(yè)水平.某中學物理教研組想通過此次中考模擬的成績來預估中考的各個分數(shù)段人數(shù),在全年級隨機抽取了男、女各40名學生的成績,并將數(shù)據(jù)進行整理分析,給出了下面部分信息:

①男生成績扇形統(tǒng)計圖和女生成績頻數(shù)分布直方圖如下:(數(shù)據(jù)分組為A組:x50,B組:50≤x60,C組:60≤x70D組:70≤x≤80

②男生C組中全部15名學生的成績?yōu)椋?/span>63,6964,62,68,6965,69,65,66,676167,6669

③兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、滿分率、極差(單位:分)如表所示:

平均數(shù)

中位數(shù)

眾數(shù)

滿分率

極差

男生

70

b

c

25%

32

女生

70

68

78

15%

d

1)扇形統(tǒng)計圖A組學生對應的圓心角α的度數(shù)為______

2)若成績在70分(包含70分)以上為優(yōu)秀,請你估計該校1200名學生此次考試中優(yōu)秀的人數(shù).

【答案】1;(2435

【解析】

1)先求出C組對應的百分比,再根據(jù)百分比之和等于1求出A組的百分比,繼而乘以360°即可得;

2)用總?cè)藬?shù)乘以樣本中男、女生中優(yōu)秀的人數(shù)占被調(diào)查人數(shù)的比例即可得.

解:(1C組對應的百分比為×100%=37.5%,

A組對應的百分比為1-20%+37.5%+40%=2.5%,

A組學生對應的圓心角α的度數(shù)為360°×2.5%=9°

故答案為:;

2)估計該校1200名學生此次考試中優(yōu)秀的人數(shù)1200×=435(名).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC,ECD邊上一點,將BCE沿BE折疊,使得C落到矩形內(nèi)點F的位置,連接AF,若tanBAF,則CE_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高爾基說:書,是人類進步的階梯. ”閱讀可以豐富知識、拓展視野、充實生活等諸多益處. 為了解學生的課外閱讀情況,某校隨機抽查了部分學生閱讀課外書冊數(shù)的情況,并繪制出如下統(tǒng)計圖,其中條形統(tǒng)計圖因為破損丟失了閱讀5冊書數(shù)的數(shù)據(jù).

1)條形圖中丟失的數(shù)據(jù)是 ,并寫出閱讀書冊數(shù)的眾數(shù)是 、中位數(shù)是 ;

2)根據(jù)隨機抽查的這個結(jié)果,估計該校1200名學生中課外閱讀5冊書的學生人數(shù)是 ;

3)若學校又補查了部分同學的課外閱讀情況,得知這部分同學中課外閱讀最少的是6冊,將補查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒有改變,試求最多補查了多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某場足球比賽中,球員甲在球門正前方點O處起腳射門,在不受阻擋的情況下,足球沿如圖所示的拋物線飛向球門中心線,當足球飛行的水平距離為2 m時,高度為,落地點AO12 m.已知點O距球門9 m,球門的橫梁高為2.44 m

1)飛行的足球能否射入球門?通過計算說明理由;

2)若守門員乙站在球門正前方2 m處,他跳起時能摸到的最大高度為2.52 m,他能阻止此次射門嗎?并寫明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了測量重慶有名的觀景點南山大金鷹的大致高度,小南同學使用的無人機進行觀察,當無人機與大金鷹側(cè)面在同一平面,且距離水平面垂直高度GF100米時,小南調(diào)整攝像頭方向,當俯角為45°時,恰好可以拍攝到金鷹的頭頂A點;當俯角為63°時,恰好可以拍攝到金鷹底座點E.已知大金鷹是雄踞在一人造石臺上,石臺側(cè)面CE12.5米,坡度為10.75,石臺上方BC10米,頭部A點位于BC中點正上方.則金鷹自身高度約( 。┟祝ńY(jié)果保留一位小數(shù),sin63°≈0.89,cos63°≈0.45tan63°≈1.96

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=-x2+x+3x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C:連接BC,點P為線段BC上方拋物線上的一動點,連接OPBC于點Q

1)如圖1,當值最大時,點E為線段AB上一點,在線段BC上有兩動點M,NMN上方),且MN=1,求PM+MN+NE-BE的最小值;

2)如圖2,連接AC,將AOC沿射線CB方向平移,點A,C,O平移后的對應點分別記作A1,C1,O1,當C1B=O1B時,連接A1B、O1B,將A1O1B繞點O1沿順時針方向旋轉(zhuǎn)90°后得A2O1B1在直線x=上是否存在點K,使得A2B1K為等腰三角形?若存在,直接寫出點K的坐標;不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知拋物線yax2bx(a≠0)經(jīng)過A3,0),B4,4)兩點.

1)求拋物線解析式.

2)將直線OB向下平移m個單位后,得到的直線與拋物線只有一個公共點D,求m值及交點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,完成相應的任務:

我們知道,利用尺規(guī)作已知線段的垂直平分線可以得到該線段的中點、四等分點、……怎樣得到線段的三等分點呢?如圖,已知線段MN,用尺規(guī)在MN上求作點P,使.

小穎的作法是:

①作射線MK(點K不在直線MN上);

②在射線MK上依次截取線段MA,AB,使,連接BN;

③作射線,交MN于點PP即為所求作的點.

小穎作法的理由如下:

(作法),∴

(已知),(等量代換)

(線段和差定義),∴(等量代換,等式性質(zhì))

數(shù)學思考:(1)小穎作法理由中所缺的依據(jù)是:________________________________.

拓展應用:(2)如圖,已知線段ab,c,求作線段d,使

a. b. c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AEBC,垂足為E,如果AB5,AE4BC8,有下列結(jié)論:

DE4;

SAEDS四邊形ABCD;

DE平分∠ADC

④∠AED=∠ADC

其中正確結(jié)論的序號是_____(把所有正確結(jié)論的序號都填在橫線上)

查看答案和解析>>

同步練習冊答案