【題目】如圖,等腰 Rt△ABC 中,∠BAC=90°,AD⊥BC 于D,∠ABC 的平分線分別交 AC,AD 于E,F,點(diǎn)M 為 EF 的中點(diǎn),AM 的延長線交 BC 于N,連接 DM,NF,EN.下列結(jié)論:①△AFE為等腰三角形;②△BDF≌△ADN;③NF所在的直線垂直平分AB;④DM平分∠BMN;⑤AE=EN=NC;⑥.其中正確結(jié)論的個(gè)數(shù)是( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
【答案】D
【解析】
①由等腰三角形的性質(zhì)得∠BAD=∠CAD=∠C=45°,再根據(jù)三角形外角性質(zhì)得∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,則得到∠AEF=∠AFE,可判斷△AEF為等腰三角形,于是可對①進(jìn)行判斷;求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,證△DFB≌△DAN,由題意可得BF>BD=AD,所以BFAF,所以點(diǎn)F不在線段AB的垂直平分線上,所以③不正確,由∠ADB=∠AMB=90°, 可知A、B、D、M四點(diǎn)共圓, 可求出∠ABM=∠ADM=22.5°,繼而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°, 即可求出DM平分∠BMN ,所以④正確;根據(jù)全等三角形的性質(zhì)可得△AFB≌△CAN, 繼而可得AE=CN,根據(jù)線段垂直平分線的性質(zhì)和等腰三角形的判定可得△ENC是等腰直角三角形,繼而可得AE=CN=EN,所以⑤正確;根據(jù)等腰三角形的判定可得△BAN是等腰三角形,可得BD=AB,繼而可得,由⑤可得,所以⑥正確.
解:∵等腰Rt△ABC中,∠BAC=90°,AD⊥BC,
∴∠BAD=∠CAD=∠C=45°,
∵BE平分∠ABC,
∴∠ABE=∠CBE=∠ABC=22.5°,
∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5° ∴∠AEF=∠AFE,
∴△AEF為等腰三角形,所以①正確;
∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE= ∠ABC=22.5°,
∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,AM⊥BE,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN,
在△FBD和△NAD中,
∠FBD=∠DAN ,BD=AD ,∠BDF=∠ADN ,
∴△FBD≌△NAD,所以②正確;
因?yàn)?/span>BF>BD=AD,
所以BFAF,
所以點(diǎn)F不在線段AB的垂直平分線上,所以③不正確
∵∠ADB=∠AMB=90°,
∴A、B、D、M四點(diǎn)共圓,
∴∠ABM=∠ADM=22.5°,
∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,
∴DM平分∠BMN ,所以④正確;
在△AFB和△CNA中,
∠BAF=∠C=45°,AB=AC, ∠ABF=∠CAN=22.5°,
∴△AFB≌△CAN(ASA),
∴AF=CN,
∵AF=AE,
∴AE=CN,
∵AE=AF,FM=EM,
∴AM⊥EF,
∴∠BMA=∠BMN=90°,
∵BM=BM,∠MBA=∠MBN,
∴△MBA≌△MBN,
∴AM=MN,
∴BE垂直平分線段AN,
∴AB=BN,EA=EN,
∵BE=BE,
∴△ABE≌△NBE,
∴∠ENB=∠EAB=90°,
∴EN⊥NC.
∴△ENC是等腰直角三角形,
∴AE=CN=EN,所以⑤正確;
∵AF=FN,
所以∠FAN =∠FNA,
因?yàn)椤?/span>BAD =∠FND=45°,
所以∠FAN+ ∠BAD =∠FNA+∠FND,
所以∠BAN =∠BNA,
所以AB=BN,
所以,
由⑤可知,△ENC是等腰直角三角形,AE=CN=EN,
∴,
所以,所以⑥正確,
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖所示,它是由八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1,S2,S3,若正方形EFGH的邊長為4,則S1+S2+S3的值為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,小明到小陳家所在的美麗鄉(xiāng)村游玩,在村頭A處小明接到小陳發(fā)來的定位,發(fā)現(xiàn)小陳家C在自己的北偏東45°方向,于是沿河邊筆直的綠道l步行200米到達(dá)B處,這時(shí)定位顯示小陳家C在自己的北偏東30°方向,如圖所示,根據(jù)以上信息和下面的對話,請你幫小明算一算他還需沿綠道繼續(xù)直走多少米才能到達(dá)橋頭D處(精確到1米)(備用數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,OA=OB,點(diǎn)C為AB的中點(diǎn),AB=16,以點(diǎn)O為圈心,6為半徑的圓經(jīng)過點(diǎn)C,分別交OA、OB于點(diǎn)E、F.
(1)求證:AB為⊙O的切線;
(2)求圖中陰影部分的面積.(注:結(jié)果保留π,sin37°=0.6,cos37°=0.8,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,D,C,F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:△DEF≌△ABC.
(2)若∠A=52°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解余姚市對“垃圾分類知識(shí)”的知曉程度,某數(shù)學(xué)學(xué)習(xí)興趣小組對市民進(jìn)行隨機(jī)抽樣的問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖(圖1、圖2),請根據(jù)圖中的信息解答下列問題.
(1)這次調(diào)查的市民人數(shù)為 人,圖2中,m=
(2)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;
(3)據(jù)統(tǒng)計(jì),2017年余姚約有市民140萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計(jì)對“垃圾分類知識(shí)”的知曉程度為“B.了解”的市民約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在長方形中,AB=4cm,BC=6cm,點(diǎn)為中點(diǎn),如果點(diǎn)在線段上以每秒2cm的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為秒,若某一時(shí)刻△BPE與△CQP全等,求此時(shí)的值及點(diǎn)的運(yùn)動(dòng)速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在四邊形中,,點(diǎn)是的中點(diǎn),若是的平分線,試判斷,,之間的等量關(guān)系.
解決此問題可以用如下方法:延長交的延長線于點(diǎn),易證得到,從而把,,轉(zhuǎn)化在一個(gè)三角形中即可判斷.
,,之間的等量關(guān)系________;
(2)問題探究:如圖②,在四邊形中,,與的延長線交于點(diǎn),點(diǎn)是的中點(diǎn),若是的平分線,試探究,,之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com