【題目】如圖,在正方形ABCD中,EBC上一點(diǎn),BEBC,連接AE,作BFAE,分別與AECD交于點(diǎn)K、FG、H分別在ADAE上,且四邊形KFGH是矩形,則________

【答案】

【解析】分析:由BEBC,設(shè)BE=x,則BC=3x,易證△ABE≌△BCF,得CF=BE=x,由勾股定理求出BF=,再證明△BKE∽△BCF,求得BK=.故HG=FK=,從而可求出的值

詳解:∵四邊形ABCD是正方形,

AB=BC,ABC=BCD=90°.

∴∠BAE+∠AEB=90°

BFAE,

∴∠BKE=90°,

∴∠KBE+∠BEK=90°,

∴∠BAE=∠KBE.

在△ABE和△BCF中,

∴△ABE≌△BCF

CF=BE.

BEBC,設(shè)BE=x,則BC=3x,

BC=3x,CF=x,

BF=

∵∠BKE=BCF=90°,KBE=CBF,

∴△BKE∽△BCF

,即

BK=

KF=

∵四邊形KFGH是矩形,

∴GH= KF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1個(gè)單位的圓片上有一點(diǎn)A與數(shù)軸上的原點(diǎn)重合,AB是圓片的直徑.(注:結(jié)果保留π )

(1)把圓片沿?cái)?shù)軸向右滾動(dòng)半周,點(diǎn)B到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是   數(shù)(填“無理”或“有理”),這個(gè)數(shù)是   ;

(2)把圓片沿?cái)?shù)軸滾動(dòng)2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是   ;

(3)圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:+2,﹣1,+3,﹣4,﹣3

   次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最近,第   次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最遠(yuǎn).

當(dāng)圓片結(jié)束運(yùn)動(dòng)時(shí),A點(diǎn)運(yùn)動(dòng)的路程共有   ,此時(shí)點(diǎn)A所表示的數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)DBC的中點(diǎn),且AB18cm,AC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點(diǎn)E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,坡AB的坡比為1:2.4,坡長AB=130米,坡AB的高為BT.在坡AB的正面有一棟建筑物CH,點(diǎn)H、A、T在同一條地平線MN上.

(1)試問坡AB的高BT為多少米?

(2)若某人在坡AB的坡腳A處和中點(diǎn)D處,觀測(cè)到建筑物頂部C處的仰角分別為60°30°,試求建筑物的高度CH.(精確到米, ≈1.73, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列關(guān)于xy的方程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知△ABC中,∠ABC=45°,點(diǎn)E為AC上的一點(diǎn),連接BE,在BC上找一點(diǎn)G,使得AG=AB,AG交BE于K.

(1)若∠ABE=30°,且∠EBC=∠GAC,BK=4,求AC的長度.

(2)如圖2,過點(diǎn)A作DA⊥AE交BE于點(diǎn)D,過D、E分別向AB所在的直線作垂線,垂足分別為點(diǎn)M、N,且NE=AM,若D為BE的中點(diǎn),證明: DG=2AG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在正方形中,是對(duì)角線上的一點(diǎn),點(diǎn)的延長線上,且

求證:

求證:

把正方形改為菱形,其他條件不變(如圖②),且,求的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩根木條,一根長20cm,另一根長24cm,將它們一端重合且放在同一條直線上,此時(shí)兩根木條的中點(diǎn)之間的距離為(  )

A. 2cm B. 4cm C. 2cm22cm D. 4cm44cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案