【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1上圖形有6個小圓,第2個圖形有10個小圓,和3個圖形有16個小圓,第4個圖形有24個小圓,…依此規(guī)律,第7個圖形的小圓的個數(shù)是_____,第n個圖形的小圓的個數(shù)是_____.
【答案】60 n2+n+4
【解析】
分析數(shù)據(jù)可得:第1個圖形中小圓的個數(shù)為6;第2個圖形中小圓的個數(shù)為10;第3個圖形中小圓的個數(shù)為16;第4個圖形中小圓的個數(shù)為24;則知第n個圖形中小圓的個數(shù)為n(n+1)+4.將n=7代入即可求得答案.
分析數(shù)據(jù)可得:
第1個圖形中小圓的個數(shù)為6;
第2個圖形中小圓的個數(shù)為10;
第3個圖形中小圓的個數(shù)為16;
第4個圖形中小圓的個數(shù)為24;
…
則知第n個圖形中小圓的個數(shù)為n(n+1)+4=n2+n+4.
故第7個圖形中小圓的個數(shù)為7×8+4=60個
故答案為:60,n2+n+4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=mx2-6mx+5m與x軸交于A、B兩點,以AB為直徑的⊙P經(jīng)過該拋物線的頂點C,直線l∥x軸,交該拋物線于M、N兩點,交⊙P與E、F兩點,若EF=2,則MN的長為( )
A.2 B.4 C.5 D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊BC在x軸上,點A(a,4)和D分別在反比函數(shù)y=-和y=(m>0)的圖象上.
(1)當(dāng)AB=BC時,求m的值。
(2)連結(jié)OA,OD.當(dāng)OD平方∠AOC時,求△AOD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一分鐘投籃測試規(guī)定,得6分以上為合格,得9分以上為優(yōu)秀,甲、乙兩組同學(xué)的一次測試成績?nèi)缦拢?/span>
成績(分) | 4 | 5 | 6 | 7 | 8 | 9 |
甲組(人) | 1 | 2 | 5 | 2 | 1 | 4 |
乙組(人) | 1 | 1 | 4 | 5 | 2 | 2 |
(1)請你根據(jù)上述統(tǒng)計數(shù)據(jù),把下面的圖和表補充完整;
一分鐘投籃成績統(tǒng)計分析表:
統(tǒng)計量 | 平均分 | 方差 | 中位數(shù) | 合格率 | 優(yōu)秀率 |
甲組 | 2.56 | 6 | 80.0% | 26.7% | |
乙組 | 6.8 | 1.76 | 86.7% | 13.3% |
(2)下面是小明和小聰?shù)囊欢螌υ挘埬愀鶕?jù)(1)中的表,寫出兩條支持小聰?shù)挠^點的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列各數(shù)填入相應(yīng)的集合內(nèi):
,1.010010001,,22,-8,,-1.232232223…,-1.414,0.
正數(shù)集合{ ……}
負數(shù)集合{ ……}
有理數(shù)集合{ ……}
無理數(shù)集合{ ……}
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點,點A坐標(biāo)為(a,0),點C的坐標(biāo)為(0,b),且a、b滿足+|b-6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O-C-B-A-O的線路移動.
(1)a=______________,b=_____________,點B的坐標(biāo)為_______________;
(2)當(dāng)點P移動4秒時,請指出點P的位置,并求出點P的坐標(biāo);
(3)在移動過程中,當(dāng)點P到x軸的距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=2x-4的圖象與x軸、y軸分別相交于點A、B,點P在該函數(shù)的圖象上,P到x軸、y軸的距離分別為d1,d2。
(1)求點A,B的坐標(biāo);
(2)當(dāng)P為線段AB的中點時,求d1+d2的值;
(3)直接寫出d1+d2的范圍,并求當(dāng)d1+d2=3時點P的坐標(biāo);
(4)若在線段AB上存在無數(shù)個點P,使d1+ad2=4(a為常數(shù)),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形 ABCD 中, AD 2 AB ;CF 平分 BCD 交 AD 于 F ,作 CE AB , 垂足 E 在邊 AB 上,連接 EF .則下列結(jié)論:① F 是 AD 的中點; ② S△EBC 2S△CEF;③ EF CF ; ④ DFE 3AEF .其中一定成立的是_____.(把所有正確結(jié)論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國市制長度單位,1里=500米,則該沙田的面積為( )
A.750平方千米B.75平方千米C.15平方千米D.7.5平方千米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com