射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值    (單位:秒)
【答案】分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分為三種情況:畫出圖形,結(jié)合圖形求出即可;
解答:解:∵△ABC是等邊三角形,
∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,
∵QN∥AC,AM=BM.
∴N為BC中點,
∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,
分為三種情況:①如圖1,
當⊙P切AB于M′時,連接PM′,
則PM′=cm,∠PM′M=90°,
∵∠PMM′=∠BMN=60°,
∴M′M=1cm,PM=2MM′=2cm,
∴QP=4cm-2cm=2cm,
即t=2;
②如圖2,
當⊙P于AC切于A點時,連接PA,
則∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,
∴PM=1cm,
∴QP=4cm-1cm=3cm,
即t=3,
當⊙P于AC切于C點時,連接PC,
則∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,
∴P′N=1cm,
∴QP=4cm+2cm+1cm=7cm,
即當3≤t≤7時,⊙P和AC邊相切;

③如圖1,
當⊙P切BC于N′時,連接PN′
則PN′=cm,∠PN′N=90°,
∵∠PNN′=∠BNM=60°,
∴N′N=1cm,PN=2NN′=2cm,
∴QP=4cm+2cm+2cm=8cm,
即t=8;
故答案為:t=2或3≤t≤7或t=8.
點評:本題考查了等邊三角形的性質(zhì),平行線的性質(zhì),勾股定理,含30度角的直角三角形性質(zhì),切線的性質(zhì)的應(yīng)用,主要考查學生綜合運用定理進行計算的能力,注意要進行分類討論。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•杭州)射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,
3
cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值
t=2或3≤t≤7或t=8
t=2或3≤t≤7或t=8
(單位:秒)

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(浙江杭州卷)數(shù)學(帶解析) 題型:填空題

射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值     (單位:秒)

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年湖北省鄂州市九年級上學期10月月考數(shù)學試卷(解析版) 題型:填空題

射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC//QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值                              (單位:秒).

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年北京市東城區(qū)初三第一學期期末統(tǒng)一測試數(shù)學試卷(解析版) 題型:填空題

射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與△的邊相切,請寫出t可取的所有值                  

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(浙江杭州卷)數(shù)學(解析版) 題型:填空題

射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值     (單位:秒)

 

查看答案和解析>>

同步練習冊答案