【題目】如圖,兩個(gè)直角∠AOB,∠COD有相同的頂點(diǎn)O,下列結(jié)論:①∠AOC=∠BOD;
②∠AOC+∠BOD=90°;③若OC平分∠AOB,則OB平分∠COD;④∠AOD的平分線與∠COB的平分線是同一條射線. 其中正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】C
【解析】解:①∵∠AOB=∠COD=90°,
∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,
∴∠AOC=∠BOD,
∴①正確;
②∵只有當(dāng)OC,OB分別為∠AOB和∠COD的平分線時(shí),∠AOC+∠BOD=90°,
∴②錯(cuò)誤;
③∵∠AOB=∠COD=90°,OC平分∠AOB,
∴∠AOC=∠COB=45°,則∠BOD=90°﹣45°=45°
∴OB平分∠COD,
∴③正確;④∵∠AOB=∠COD=90°,∠AOC=∠BOD(已證);∴∠AOD的平分線與∠COB的平分線是同一條射線,∴④正確;
故答案為:C.
根據(jù)同角的余角相等,得到∠AOC=∠BOD;只有當(dāng)OC,OB分別為∠AOB和∠COD的平分線時(shí),∠AOC+∠BOD=90°;由OC平分∠AOB,得到∠BOD的度數(shù),得到OB平分∠COD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖象交于點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo);
(2)設(shè)x軸上有一點(diǎn)P(a,0),過(guò)點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交和的圖象于點(diǎn)B、C,連接OC.若BC=OA,求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在5次打靶測(cè)試中命中的環(huán)數(shù)如下: 甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填寫(xiě)下表:
平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | 0.4 | |
乙 | 9 | 3.2 |
(2)教練根據(jù)這5次成績(jī),選擇甲參加射擊比賽,教練的理由是什么?
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績(jī)的方差 . (填“變大”、“變小”或“不變”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+1分別與x軸、y軸相交于點(diǎn)A,B,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A1 , 再過(guò)點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1 , 以點(diǎn)A為圓心,AB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2 , …,按此做法進(jìn)行下去,則點(diǎn)B4的坐標(biāo)是( )
A.(2 ,2 )
B.(3,4)
C.(4,4)
D.(4 ﹣1,4 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平整的地面上,用若干個(gè)棱長(zhǎng)完全相同的小正方體堆成一個(gè)幾何體.
(1)請(qǐng)畫(huà)出這個(gè)幾何體的三視圖.
(2)如果現(xiàn)在你手頭還有一些相同的小正方體,要求保持俯視圖和左視圖不變,最多可以再添加幾個(gè)小正方體
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD,BC的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE;
(3)若∠CDE=27°,OB=2,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線MN是四邊形AMBN的對(duì)稱(chēng)軸,點(diǎn)P是直線MN上的點(diǎn),下列判斷錯(cuò)誤的是( )
A.AM=BM
B.AP=BN
C.∠MAP=∠MBP
D.∠ANM=∠BNM
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com