(2013•佛山)如圖,若∠A=60°,AC=20m,則BC大約是(結(jié)果精確到0.1m) ( 。
分析:首先計(jì)算出∠B的度數(shù),再根據(jù)直角三角形的性質(zhì)可得AB=40m,再利用勾股定理計(jì)算出BC長(zhǎng)即可.
解答:解:∵∠A=60°,∠C=90°,
∴∠B=30°,
∴AB=2AC,
∵AC=20m,
∴AB=40m,
∴BC=
AB2-AC2
=
1600-400
=
1200
=20
3
≈34.6(m),
故選:B.
點(diǎn)評(píng):此題主要考查了勾股定理,以及直角三角形的性質(zhì),關(guān)鍵是掌握在直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半.在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•佛山)如圖①,已知拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)把拋物線向上平移,使得頂點(diǎn)落在x軸上,直接寫(xiě)出兩條拋物線、對(duì)稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•佛山)并排放置的等底等高的圓錐和圓柱(如圖)的主視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•佛山)如圖,圓錐的側(cè)面展開(kāi)圖是一個(gè)半圓,求母線AB與高AO的夾角.參考公式:圓錐的側(cè)面積S=πrl,其中r為底面半徑,l為母線長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•佛山)課本指出:公認(rèn)的真命題稱為公理,除了公理外,其他的真命題(如推論、定理等)的正確性都需要通過(guò)推理的方法證實(shí).
(1)敘述三角形全等的判定方法中的推論AAS;
(2)證明推論AAS.
要求:敘述推論用文字表達(dá);用圖形中的符號(hào)表達(dá)已知、求證,并證明,證明對(duì)各步驟要注明依據(jù).

查看答案和解析>>

同步練習(xí)冊(cè)答案