【題目】如圖,拋物線y=﹣x2﹣2x+3x軸交于點(diǎn)A,B,把拋物線與線段AB圍成的圖形記為C1Cl繞點(diǎn)B中心對稱變換得C2, C2x軸交于另一點(diǎn)C,將C2繞點(diǎn)C中心對稱變換得C3連接CC3的頂點(diǎn),則圖中陰影部分的面積為(

A. 32 B. 24 C. 36 D. 48

【答案】A

【解析】試題解析:

C1的頂點(diǎn)坐標(biāo)為(1,4).

當(dāng)y=0時(shí),

解得:

∴點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(1,0).

∵將繞點(diǎn)B中心對稱變換得C2,C2繞點(diǎn)C中心對稱變換得C3

C2的頂點(diǎn)坐標(biāo)為(3,4),點(diǎn)C的坐標(biāo)為(5,0),C3的頂點(diǎn)坐標(biāo)為(7,4),

S陰影=[7(1)]×(40)=8×4=32.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了進(jìn)一步了解某校初中學(xué)生的體質(zhì)健康狀況,對八年級的部分學(xué)生進(jìn)行了體質(zhì)監(jiān)測,同時(shí)統(tǒng)計(jì)了每個(gè)人的得分(假設(shè)這個(gè)得分為,滿分為50).體質(zhì)檢測的成績分為四個(gè)等級:優(yōu)秀、良好、合格、不合格.根據(jù)調(diào)查結(jié)果繪制了下列兩福不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖提供的信息回答以下問題:

(1)補(bǔ)全上面的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;

(2)被測試的部分八年級學(xué)生的體質(zhì)測試成績的中位數(shù)落在 等級:

(3)若該校八年級有1400名學(xué)生,估計(jì)該校八年級體質(zhì)為不合格的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴點(diǎn)A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.

(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線段AB的延長線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問動(dòng)點(diǎn)M,N在移動(dòng)的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的布袋中,紅色、黑色、白色的球共有個(gè),除顏色外,形狀、大小、質(zhì)地等完全相同.小剛通過多次摸球?qū)嶒?yàn)后發(fā)現(xiàn)其中摸到紅色、黑色球的頻率穩(wěn)定在,則口袋中白色球的個(gè)數(shù)很可能是(個(gè)

A. 48 B. 60 C. 18 D. 54

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用時(shí)間,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?

1)設(shè)江水的流速為千米/時(shí),填空:輪船順流航行速度為_________千米/時(shí),逆流航行速度為_________千米/時(shí),順流航行100千米所用時(shí)間為_________小時(shí),逆流航行60千米所用時(shí)間為_________小時(shí).

2)列出方程,并求出問題的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過半徑OD的中點(diǎn),點(diǎn)E為⊙O上一動(dòng)點(diǎn),CF⊥AE于點(diǎn)F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過的路徑長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是等邊三角形ABC的外接圓,點(diǎn)D在圓上,在CD的延長線上有一點(diǎn)F,使DF=DAAE∥BCCFE

(1)求證:EA是⊙O的切線;

(2)求證:BD=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形紙片,,點(diǎn)在邊上,將紙片沿折疊,使點(diǎn)落在點(diǎn)處,連接,當(dāng)是直角三角形時(shí),的面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:(1)b2﹣4ac>0;(2)abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正確的結(jié)論的個(gè)數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊答案