【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位的半圓O1,O2,O3,…組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒個(gè)單位長度,則第2018秒時(shí),點(diǎn)P的坐標(biāo)是點(diǎn)( 。
A. (2017,1) B. (2018,0) C. (2017,﹣1) D. (2019,0)
【答案】B
【解析】
根據(jù)圓的周長公式計(jì)算出半圓的周長為π,在根據(jù)圖象找出規(guī)律即可.
半圓的周長為×2π×1=π,
第1秒時(shí),點(diǎn)P的坐標(biāo)為(1,1),
第2秒時(shí),點(diǎn)P的坐標(biāo)為(2,0),
第3秒時(shí),點(diǎn)P的坐標(biāo)為(3,-1),
第4秒時(shí),點(diǎn)P的坐標(biāo)為(4,0),
第5秒時(shí),點(diǎn)P的坐標(biāo)為(5,1),
...
因此橫坐標(biāo)按正整數(shù)排列,縱坐標(biāo)按1,0,-1,0四個(gè)一循環(huán);
2018÷4=504….2;
因此第2018秒時(shí),坐標(biāo)為:(2018,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知是等邊三角形,點(diǎn)的坐標(biāo)是,點(diǎn)在第一象限,的平分線交軸于點(diǎn),把繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),使邊與重合,得到,連接.求:的長及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)D為y軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)P經(jīng)過點(diǎn)C時(shí),求直線DP的函數(shù)解析式;
(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;
②如圖②,把長方形沿著OP折疊,點(diǎn)B的對應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).
(3)點(diǎn)P在運(yùn)動(dòng)過程中是否存在使△BDP為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年9月,某手機(jī)公司發(fā)布了新款智能手機(jī),為了調(diào)查某小區(qū)業(yè)主對該款手機(jī)的購買意向,該公司在某小區(qū)隨機(jī)對部分業(yè)主進(jìn)行了問卷調(diào)查,規(guī)定每人只能從A類(立刻去搶購)、B類(降價(jià)后再去買)、C類(猶豫中)、D類(肯定不買)這四類中選一類,并制成了以下兩幅不完整的統(tǒng)計(jì)圖,由圖中所給出的信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中B類對應(yīng)的百分比為 %,請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該小區(qū)共有4000人,請你估計(jì)該小區(qū)大約有多少人立刻去搶購該款手機(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,﹣1),圖象與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)拋物線對稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;
(3)點(diǎn)E為直線BC上的任意一點(diǎn),過點(diǎn)E作x軸的垂線與拋物線交于點(diǎn)F,問是否存在點(diǎn)E使△DEF為直角三角形?若存在,求出點(diǎn)E坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,將一個(gè)邊長為2的正方形ABCD和一個(gè)長為2、寬為1的長方形CEFD拼在一起,構(gòu)成一個(gè)大的長方形ABEF.現(xiàn)將小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至,旋轉(zhuǎn)角為.
(1)當(dāng)點(diǎn)恰好落在EF邊上時(shí),求旋轉(zhuǎn)角的值;
(2)如圖2,G為BC的中點(diǎn),且00<<900,求證:;
(3)小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,與能否全等?若能,直接寫出旋轉(zhuǎn)角的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=8,點(diǎn)C和點(diǎn)D是⊙O上關(guān)于直線AB對稱的兩個(gè)點(diǎn),連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點(diǎn)E,過點(diǎn)C作直線CG與線段AB的延長線相交于點(diǎn)F,與直線AD相交于點(diǎn)G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點(diǎn)H為線段OB上一點(diǎn),連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:我們知道,比較兩數(shù)(式)大小有很多方法,“作差法”是常用的方法之一,其原理是不等式(或等式)的性質(zhì):若,則;若,則;若,則.
例:已知,,其中,求證:.
證明:.
∵,∴,∴.
(1)操作感知:比較大。
①若,則______;
②______.
(2)類比探究:已知,,試運(yùn)用上述方法比較、的大小,并說明理由.
(3)應(yīng)用拓展:已知,為平面直角坐標(biāo)系中的兩點(diǎn),小明認(rèn)為,無論取何值,點(diǎn)始終在點(diǎn)的上方,小明的猜想對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知:E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.求證:
(1)∠ECD=∠EDC;
(2)OE是CD的垂直平分線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com